Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 40(7): 962-974, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30932294

RESUMO

Congenital myopathies are early onset, slowly progressive neuromuscular disorders of variable severity. They are genetically and phenotypically heterogeneous and caused by pathogenic variants in several genes. Multi-minicore Disease, one of the more common congenital myopathies, is frequently caused by recessive variants in either SELENON, encoding the endoplasmic reticulum glycoprotein selenoprotein N or RYR1, encoding a protein involved in calcium homeostasis and excitation-contraction coupling. The mechanism by which recessive SELENON variants cause Multiminicore disease (MmD) is unclear. Here, we extensively investigated muscle physiological, biochemical and epigenetic modifications, including DNA methylation, histone modification, and noncoding RNA expression, to understand the pathomechanism of MmD. We identified biochemical changes that are common in patients harboring recessive RYR1 and SELENON variants, including depletion of transcripts encoding proteins involved in skeletal muscle calcium homeostasis, increased levels of Class II histone deacetylases (HDACs) and DNA methyltransferases. CpG methylation analysis of genomic DNA of patients with RYR1 and SELENON variants identified >3,500 common aberrantly methylated genes, many of which are involved in calcium signaling. These results provide the proof of concept for the potential use of drugs targeting HDACs and DNA methyltransferases to treat patients with specific forms of congenital myopathies.


Assuntos
Metilação de DNA , Proteínas Musculares/genética , Doenças Musculares/congênito , Doenças Musculares/genética , Selenoproteínas/genética , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Ilhas de CpG , DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Código das Histonas , Histona Desacetilases/genética , Humanos , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA