Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Entropy (Basel) ; 25(12)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38136477

RESUMO

Measurements of systems taken along a continuous functional dimension, such as time or space, are ubiquitous in many fields, from the physical and biological sciences to economics and engineering. Such measurements can be viewed as realisations of an underlying smooth process sampled over the continuum. However, traditional methods for independence testing and causal learning are not directly applicable to such data, as they do not take into account the dependence along the functional dimension. By using specifically designed kernels, we introduce statistical tests for bivariate, joint, and conditional independence for functional variables. Our method not only extends the applicability to functional data of the Hilbert-Schmidt independence criterion (hsic) and its d-variate version (d-hsic), but also allows us to introduce a test for conditional independence by defining a novel statistic for the conditional permutation test (cpt) based on the Hilbert-Schmidt conditional independence criterion (hscic), with optimised regularisation strength estimated through an evaluation rejection rate. Our empirical results of the size and power of these tests on synthetic functional data show good performance, and we then exemplify their application to several constraint- and regression-based causal structure learning problems, including both synthetic examples and real socioeconomic data.

2.
Nat Commun ; 14(1): 4750, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550323

RESUMO

Epigenetic modifications are dynamic mechanisms involved in the regulation of gene expression. Unlike the DNA sequence, epigenetic patterns vary not only between individuals, but also between different cell types within an individual. Environmental factors, somatic mutations and ageing contribute to epigenetic changes that may constitute early hallmarks or causal factors of disease. Epigenetic modifications are reversible and thus promising therapeutic targets for precision medicine. However, mapping efforts to determine an individual's cell-type-specific epigenome are constrained by experimental costs and tissue accessibility. To address these challenges, we developed eDICE, an attention-based deep learning model that is trained to impute missing epigenomic tracks by conditioning on observed tracks. Using a recently published set of epigenomes from four individual donors, we show that transfer learning across individuals allows eDICE to successfully predict individual-specific epigenetic variation even in tissues that are unmapped in a given donor. These results highlight the potential of machine learning-based imputation methods to advance personalized epigenomics.


Assuntos
Epigênese Genética , Epigenômica , Humanos , Epigenômica/métodos , Aprendizado de Máquina , Epigenoma , Medicina de Precisão/métodos , Metilação de DNA/genética
3.
Patterns (N Y) ; 4(6): 100739, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37304758

RESUMO

We develop a model to retrospectively evaluate age-dependent counterfactual vaccine allocation strategies against the coronavirus disease 2019 (COVID-19) pandemic. To estimate the effect of allocation on the expected severe-case incidence, we employ a simulation-assisted causal modeling approach that combines a compartmental infection-dynamics simulation, a coarse-grained causal model, and literature estimates for immunity waning. We compare Israel's strategy, implemented in 2021, with counterfactual strategies such as no prioritization, prioritization of younger age groups, or a strict risk-ranked approach; we find that Israel's implemented strategy was indeed highly effective. We also study the impact of increasing vaccine uptake for given age groups. Because of its modular structure, our model can easily be adapted to study future pandemics. We demonstrate this by simulating a pandemic with characteristics of the Spanish flu. Our approach helps evaluate vaccination strategies under the complex interplay of core epidemic factors, including age-dependent risk profiles, immunity waning, vaccine availability, and spreading rates.

4.
Nat Biomed Eng ; 7(8): 1014-1027, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37277483

RESUMO

In oncology, intratumoural heterogeneity is closely linked with the efficacy of therapy, and can be partially characterized via tumour biopsies. Here we show that intratumoural heterogeneity can be characterized spatially via phenotype-specific, multi-view learning classifiers trained with data from dynamic positron emission tomography (PET) and multiparametric magnetic resonance imaging (MRI). Classifiers trained with PET-MRI data from mice with subcutaneous colon cancer quantified phenotypic changes resulting from an apoptosis-inducing targeted therapeutic and provided biologically relevant probability maps of tumour-tissue subtypes. When applied to retrospective PET-MRI data of patients with liver metastases from colorectal cancer, the trained classifiers characterized intratumoural tissue subregions in agreement with tumour histology. The spatial characterization of intratumoural heterogeneity in mice and patients via multimodal, multiparametric imaging aided by machine-learning may facilitate applications in precision oncology.


Assuntos
Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Estudos Retrospectivos , Medicina de Precisão , Tomografia por Emissão de Pósitrons/métodos , Aprendizado de Máquina
5.
Phys Rev Lett ; 130(17): 171403, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172245

RESUMO

We combine amortized neural posterior estimation with importance sampling for fast and accurate gravitational-wave inference. We first generate a rapid proposal for the Bayesian posterior using neural networks, and then attach importance weights based on the underlying likelihood and prior. This provides (1) a corrected posterior free from network inaccuracies, (2) a performance diagnostic (the sample efficiency) for assessing the proposal and identifying failure cases, and (3) an unbiased estimate of the Bayesian evidence. By establishing this independent verification and correction mechanism we address some of the most frequent criticisms against deep learning for scientific inference. We carry out a large study analyzing 42 binary black hole mergers observed by LIGO and Virgo with the SEOBNRv4PHM and IMRPhenomXPHM waveform models. This shows a median sample efficiency of ≈10% (2 orders of magnitude better than standard samplers) as well as a tenfold reduction in the statistical uncertainty in the log evidence. Given these advantages, we expect a significant impact on gravitational-wave inference, and for this approach to serve as a paradigm for harnessing deep learning methods in scientific applications.

6.
PLoS Comput Biol ; 19(5): e1011001, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37126495

RESUMO

The number of published metagenome assemblies is rapidly growing due to advances in sequencing technologies. However, sequencing errors, variable coverage, repetitive genomic regions, and other factors can produce misassemblies, which are challenging to detect for taxonomically novel genomic data. Assembly errors can affect all downstream analyses of the assemblies. Accuracy for the state of the art in reference-free misassembly prediction does not exceed an AUPRC of 0.57, and it is not clear how well these models generalize to real-world data. Here, we present the Residual neural network for Misassembled Contig identification (ResMiCo), a deep learning approach for reference-free identification of misassembled contigs. To develop ResMiCo, we first generated a training dataset of unprecedented size and complexity that can be used for further benchmarking and developments in the field. Through rigorous validation, we show that ResMiCo is substantially more accurate than the state of the art, and the model is robust to novel taxonomic diversity and varying assembly methods. ResMiCo estimated 7% misassembled contigs per metagenome across multiple real-world datasets. We demonstrate how ResMiCo can be used to optimize metagenome assembly hyperparameters to improve accuracy, instead of optimizing solely for contiguity. The accuracy, robustness, and ease-of-use of ResMiCo make the tool suitable for general quality control of metagenome assemblies and assembly methodology optimization.


Assuntos
Aprendizado Profundo , Metagenoma , Metagenoma/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Metagenômica , Software
7.
Artigo em Inglês | MEDLINE | ID: mdl-37028299

RESUMO

Acoustic holograms are able to control pressure fields with high spatial resolution, enabling complex fields to be projected with minimal hardware. This capability has made holograms attractive tools for applications, including manipulation, fabrication, cellular assembly, and ultrasound therapy. However, the performance benefits of acoustic holograms have traditionally come at the cost of temporal control. Once a hologram is fabricated, the field it produces is static and cannot be reconfigured. Here, we introduce a technique to project time-dynamic pressure fields by combining an input transducer array with a multiplane hologram, which is represented computationally as a diffractive acoustic network (DAN). By exciting different input elements in the array, we can project distinct and spatially complex amplitude fields to an output plane. We numerically show that the multiplane DAN outperforms a single-plane hologram, while using fewer total pixels. More generally, we show that adding more planes can increase the output quality of the DAN for a fixed number of degrees of freedom (DoFs; pixels). Finally, we leverage the pixel efficiency of the DAN to introduce a combinatorial projector that can project more output fields than there are transducer inputs. We experimentally demonstrate that a multiplane DAN could be used to realize such a projector.

8.
Genome Biol ; 24(1): 79, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072822

RESUMO

A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.


Assuntos
Algoritmos , Epigenômica , Genômica/métodos
9.
PLOS Digit Health ; 2(3): e0000199, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36913342

RESUMO

The COVID-19 pandemic has spurred an unprecedented demand for interventions that can reduce disease spread without excessively restricting daily activity, given negative impacts on mental health and economic outcomes. Digital contact tracing (DCT) apps have emerged as a component of the epidemic management toolkit. Existing DCT apps typically recommend quarantine to all digitally-recorded contacts of test-confirmed cases. Over-reliance on testing may, however, impede the effectiveness of such apps, since by the time cases are confirmed through testing, onward transmissions are likely to have occurred. Furthermore, most cases are infectious over a short period; only a subset of their contacts are likely to become infected. These apps do not fully utilize data sources to base their predictions of transmission risk during an encounter, leading to recommendations of quarantine to many uninfected people and associated slowdowns in economic activity. This phenomenon, commonly termed as "pingdemic," may additionally contribute to reduced compliance to public health measures. In this work, we propose a novel DCT framework, Proactive Contact Tracing (PCT), which uses multiple sources of information (e.g. self-reported symptoms, received messages from contacts) to estimate app users' infectiousness histories and provide behavioral recommendations. PCT methods are by design proactive, predicting spread before it occurs. We present an interpretable instance of this framework, the Rule-based PCT algorithm, designed via a multi-disciplinary collaboration among epidemiologists, computer scientists, and behavior experts. Finally, we develop an agent-based model that allows us to compare different DCT methods and evaluate their performance in negotiating the trade-off between epidemic control and restricting population mobility. Performing extensive sensitivity analysis across user behavior, public health policy, and virological parameters, we compare Rule-based PCT to i) binary contact tracing (BCT), which exclusively relies on test results and recommends a fixed-duration quarantine, and ii) household quarantine (HQ). Our results suggest that both BCT and Rule-based PCT improve upon HQ, however, Rule-based PCT is more efficient at controlling spread of disease than BCT across a range of scenarios. In terms of cost-effectiveness, we show that Rule-based PCT pareto-dominates BCT, as demonstrated by a decrease in Disability Adjusted Life Years, as well as Temporary Productivity Loss. Overall, we find that Rule-based PCT outperforms existing approaches across a varying range of parameters. By leveraging anonymized infectiousness estimates received from digitally-recorded contacts, PCT is able to notify potentially infected users earlier than BCT methods and prevent onward transmissions. Our results suggest that PCT-based applications could be a useful tool in managing future epidemics.

10.
Invest Radiol ; 58(5): 346-354, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36729536

RESUMO

OBJECTIVES: The UK Biobank (UKBB) and German National Cohort (NAKO) are among the largest cohort studies, capturing a wide range of health-related data from the general population, including comprehensive magnetic resonance imaging (MRI) examinations. The purpose of this study was to demonstrate how MRI data from these large-scale studies can be jointly analyzed and to derive comprehensive quantitative image-based phenotypes across the general adult population. MATERIALS AND METHODS: Image-derived features of abdominal organs (volumes of liver, spleen, kidneys, and pancreas; volumes of kidney hilum adipose tissue; and fat fractions of liver and pancreas) were extracted from T1-weighted Dixon MRI data of 17,996 participants of UKBB and NAKO based on quality-controlled deep learning generated organ segmentations. To enable valid cross-study analysis, we first analyzed the data generating process using methods of causal discovery. We subsequently harmonized data from UKBB and NAKO using the ComBat approach for batch effect correction. We finally performed quantile regression on harmonized data across studies providing quantitative models for the variation of image-derived features stratified for sex and dependent on age, height, and weight. RESULTS: Data from 8791 UKBB participants (49.9% female; age, 63 ± 7.5 years) and 9205 NAKO participants (49.1% female, age: 51.8 ± 11.4 years) were analyzed. Analysis of the data generating process revealed direct effects of age, sex, height, weight, and the data source (UKBB vs NAKO) on image-derived features. Correction of data source-related effects resulted in markedly improved alignment of image-derived features between UKBB and NAKO. Cross-study analysis on harmonized data revealed comprehensive quantitative models for the phenotypic variation of abdominal organs across the general adult population. CONCLUSIONS: Cross-study analysis of MRI data from UKBB and NAKO as proposed in this work can be helpful for future joint data analyses across cohorts linking genetic, environmental, and behavioral risk factors to MRI-derived phenotypes and provide reference values for clinical diagnostics.


Assuntos
Bancos de Espécimes Biológicos , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Imageamento por Ressonância Magnética/métodos , Estudos de Coortes , Abdome/diagnóstico por imagem , Reino Unido
11.
Sci Adv ; 9(6): eadf6182, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36753553

RESUMO

Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.


Assuntos
Holografia , Som , Engenharia Tecidual , Acústica , Hidrogéis/química
12.
PLoS Comput Biol ; 19(1): e1010799, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689461

RESUMO

Simulating the spread of infectious diseases in human communities is critical for predicting the trajectory of an epidemic and verifying various policies to control the devastating impacts of the outbreak. Many existing simulators are based on compartment models that divide people into a few subsets and simulate the dynamics among those subsets using hypothesized differential equations. However, these models lack the requisite granularity to study the effect of intelligent policies that influence every individual in a particular way. In this work, we introduce a simulator software capable of modeling a population structure and controlling the disease's propagation at an individualistic level. In order to estimate the confidence of the conclusions drawn from the simulator, we employ a comprehensive probabilistic approach where the entire population is constructed as a hierarchical random variable. This approach makes the inferred conclusions more robust against sampling artifacts and gives confidence bounds for decisions based on the simulation results. To showcase potential applications, the simulator parameters are set based on the formal statistics of the COVID-19 pandemic, and the outcome of a wide range of control measures is investigated. Furthermore, the simulator is used as the environment of a reinforcement learning problem to find the optimal policies to control the pandemic. The obtained experimental results indicate the simulator's adaptability and capacity in making sound predictions and a successful policy derivation example based on real-world data. As an exemplary application, our results show that the proposed policy discovery method can lead to control measures that produce significantly fewer infected individuals in the population and protect the health system against saturation.


Assuntos
COVID-19 , Doenças Transmissíveis , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Simulação por Computador , Doenças Transmissíveis/epidemiologia , Políticas
13.
Nat Comput Sci ; 3(1): 101-114, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38177954

RESUMO

The electronic band structure and crystal structure are the two complementary identifiers of solid-state materials. Although convenient instruments and reconstruction algorithms have made large, empirical, crystal structure databases possible, extracting the quasiparticle dispersion (closely related to band structure) from photoemission band mapping data is currently limited by the available computational methods. To cope with the growing size and scale of photoemission data, here we develop a pipeline including probabilistic machine learning and the associated data processing, optimization and evaluation methods for band-structure reconstruction, leveraging theoretical calculations. The pipeline reconstructs all 14 valence bands of a semiconductor and shows excellent performance on benchmarks and other materials datasets. The reconstruction uncovers previously inaccessible momentum-space structural information on both global and local scales, while realizing a path towards integration with materials science databases. Our approach illustrates the potential of combining machine learning and domain knowledge for scalable feature extraction in multidimensional data.


Assuntos
Algoritmos , Benchmarking , Bases de Dados Factuais , Eletrônica , Aprendizado de Máquina
14.
Sci Rep ; 12(1): 18733, 2022 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-36333523

RESUMO

Large epidemiological studies such as the UK Biobank (UKBB) or German National Cohort (NAKO) provide unprecedented health-related data of the general population aiming to better understand determinants of health and disease. As part of these studies, Magnetic Resonance Imaging (MRI) is performed in a subset of participants allowing for phenotypical and functional characterization of different organ systems. Due to the large amount of imaging data, automated image analysis is required, which can be performed using deep learning methods, e. g. for automated organ segmentation. In this paper we describe a computational pipeline for automated segmentation of abdominal organs on MRI data from 20,000 participants of UKBB and NAKO and provide results of the quality control process. We found that approx. 90% of data sets showed no relevant segmentation errors while relevant errors occurred in a varying proportion of data sets depending on the organ of interest. Image-derived features based on automated organ segmentations showed relevant deviations of varying degree in the presence of segmentation errors. These results show that large-scale, deep learning-based abdominal organ segmentation on MRI data is feasible with overall high accuracy, but visual quality control remains an important step ensuring the validity of down-stream analyses in large epidemiological imaging studies.


Assuntos
Bancos de Espécimes Biológicos , Processamento de Imagem Assistida por Computador , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética , Controle de Qualidade , Reino Unido
15.
Sci Data ; 9(1): 601, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36195599

RESUMO

We describe a publicly available dataset of annotated Positron Emission Tomography/Computed Tomography (PET/CT) studies. 1014 whole body Fluorodeoxyglucose (FDG)-PET/CT datasets (501 studies of patients with malignant lymphoma, melanoma and non small cell lung cancer (NSCLC) and 513 studies without PET-positive malignant lesions (negative controls)) acquired between 2014 and 2018 were included. All examinations were acquired on a single, state-of-the-art PET/CT scanner. The imaging protocol consisted of a whole-body FDG-PET acquisition and a corresponding diagnostic CT scan. All FDG-avid lesions identified as malignant based on the clinical PET/CT report were manually segmented on PET images in a slice-per-slice (3D) manner. We provide the anonymized original DICOM files of all studies as well as the corresponding DICOM segmentation masks. In addition, we provide scripts for image processing and conversion to different file formats (NIfTI, mha, hdf5). Primary diagnosis, age and sex are provided as non-imaging information. We demonstrate how this dataset can be used for deep learning-based automated analysis of PET/CT data and provide the trained deep learning model.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Fluordesoxiglucose F18 , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Compostos Radiofarmacêuticos , Tomografia Computadorizada por Raios X/métodos
16.
Sci Rep ; 12(1): 5558, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365709

RESUMO

The ongoing COVID-19 pandemic let to efforts to develop and deploy digital contact tracing systems to expedite contact tracing and risk notification. Unfortunately, the success of these systems has been limited, partly owing to poor interoperability with manual contact tracing, low adoption rates, and a societally sensitive trade-off between utility and privacy. In this work, we introduce a new privacy-preserving and inclusive system for epidemic risk assessment and notification that aims to address these limitations. Rather than capturing pairwise encounters between user devices as done by existing systems, our system captures encounters between user devices and beacons placed in strategic locations where infection clusters may originate. Epidemiological simulations using an agent-based model demonstrate that, by utilizing location and environmental information and interoperating with manual contact tracing, our system can increase the accuracy of contact tracing actions and may help reduce epidemic spread already at low adoption.


Assuntos
COVID-19 , Pandemias , Auscultação , COVID-19/epidemiologia , COVID-19/prevenção & controle , Busca de Comunicante , Humanos , Pandemias/prevenção & controle , Privacidade
17.
Phys Rev Lett ; 127(24): 241103, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34951790

RESUMO

We demonstrate unprecedented accuracy for rapid gravitational wave parameter estimation with deep learning. Using neural networks as surrogates for Bayesian posterior distributions, we analyze eight gravitational wave events from the first LIGO-Virgo Gravitational-Wave Transient Catalog and find very close quantitative agreement with standard inference codes, but with inference times reduced from O(day) to 20 s per event. Our networks are trained using simulated data, including an estimate of the detector noise characteristics near the event. This encodes the signal and noise models within millions of neural-network parameters and enables inference for any observed data consistent with the training distribution, accounting for noise nonstationarity from event to event. Our algorithm-called "DINGO"-sets a new standard in fast and accurate inference of physical parameters of detected gravitational wave events, which should enable real-time data analysis without sacrificing accuracy.

18.
JCI Insight ; 6(21)2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34591793

RESUMO

Obesity is one of the main drivers of type 2 diabetes, but it is not uniformly associated with the disease. The location of fat accumulation is critical for metabolic health. Specific patterns of body fat distribution, such as visceral fat, are closely related to insulin resistance. There might be further, hitherto unknown, features of body fat distribution that could additionally contribute to the disease. We used machine learning with dense convolutional neural networks to detect diabetes-related variables from 2371 T1-weighted whole-body MRI data sets. MRI was performed in participants undergoing metabolic screening with oral glucose tolerance tests. Models were trained for sex, age, BMI, insulin sensitivity, HbA1c, and prediabetes or incident diabetes. The results were compared with those of conventional models. The area under the receiver operating characteristic curve was 87% for the type 2 diabetes discrimination and 68% for prediabetes, both superior to conventional models. Mean absolute regression errors were comparable to those of conventional models. Heatmaps showed that lower visceral abdominal regions were critical in diabetes classification. Subphenotyping revealed a group with high future diabetes and microalbuminuria risk.Our results show that diabetes is detectable from whole-body MRI without additional data. Our technique of heatmap visualization identifies plausible anatomical regions and highlights the leading role of fat accumulation in the lower abdomen in diabetes pathogenesis.


Assuntos
Aprendizado Profundo/normas , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Diabetes Mellitus Tipo 2/diagnóstico , Aprendizado de Máquina/normas , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
19.
Comput Med Imaging Graph ; 92: 101967, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34392229

RESUMO

Brain ageing is a complex neurobiological process associated with morphological changes that can be assessed on MRI scans. Recently, Deep learning (DL)-based approaches have been proposed for the prediction of chronological brain age from MR images yielding high accuracy. These approaches, however, usually do not address quantification of uncertainty and, therefore, intrinsic physiological variability. Considering uncertainty is essential for the interpretation of the difference between predicted and chronological age. In addition, DL-based models lack in explainability compared to classical approaches like voxel-based morphometry. In this study, we aim to address both, modeling uncertainty and providing visual explanations to explore physiological patterns in brain ageing. T1-weighted brain MRI datasets of 10691 participants of the German National Cohort Study, drawn from the general population, were included in this study (chronological age from 20 to 72 years). A regression model based on a 3D Convolutional Neural Network taking into account aleatoric noise was implemented for global as well as regional brain age estimation. We observed high overall accuracy of global brain age estimation with a mean absolute error of 3.2 ±â€¯2.5 years and mean uncertainty of 2.9 ±â€¯0.6 years. Regional brain age estimation revealed higher estimation accuracy and lower uncertainty in central compared to peripheral brain regions. Visual explanations illustrating the importance of brain sub-regions were generated using Grad-CAM: the derived saliency maps showed a high relevance of the lateral and third ventricles, the insular lobe as well as parts of the basal ganglia and the internal capsule.


Assuntos
Aprendizado Profundo , Adulto , Idoso , Encéfalo/diagnóstico por imagem , Pré-Escolar , Estudos de Coortes , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Incerteza , Adulto Jovem
20.
Nat Commun ; 12(1): 1058, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594046

RESUMO

Coronavirus disease 2019 (COVID-19) is a respiratory disease with rapid human-to-human transmission caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the exponential growth of infections, identifying patients with the highest mortality risk early is critical to enable effective intervention and prioritisation of care. Here, we present the COVID-19 early warning system (CovEWS), a risk scoring system for assessing COVID-19 related mortality risk that we developed using data amounting to a total of over 2863 years of observation time from a cohort of 66 430 patients seen at over 69 healthcare institutions. On an external cohort of 5005 patients, CovEWS predicts mortality from 78.8% (95% confidence interval [CI]: 76.0, 84.7%) to 69.4% (95% CI: 57.6, 75.2%) specificity at sensitivities greater than 95% between, respectively, 1 and 192 h prior to mortality events. CovEWS could enable earlier intervention, and may therefore help in preventing or mitigating COVID-19 related mortality.


Assuntos
COVID-19/mortalidade , Sistemas Computacionais , Registros Eletrônicos de Saúde , Escore de Alerta Precoce , Humanos , Escores de Disfunção Orgânica , SARS-CoV-2/fisiologia , Análise de Sobrevida , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA