Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 629(8013): 803-809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593860

RESUMO

Dielectric electrostatic capacitors1, because of their ultrafast charge-discharge, are desirable for high-power energy storage applications. Along with ultrafast operation, on-chip integration can enable miniaturized energy storage devices for emerging autonomous microelectronics and microsystems2-5. Moreover, state-of-the-art miniaturized electrochemical energy storage systems-microsupercapacitors and microbatteries-currently face safety, packaging, materials and microfabrication challenges preventing on-chip technological readiness2,3,6, leaving an opportunity for electrostatic microcapacitors. Here we report record-high electrostatic energy storage density (ESD) and power density, to our knowledge, in HfO2-ZrO2-based thin film microcapacitors integrated into silicon, through a three-pronged approach. First, to increase intrinsic energy storage, atomic-layer-deposited antiferroelectric HfO2-ZrO2 films are engineered near a field-driven ferroelectric phase transition to exhibit amplified charge storage by the negative capacitance effect7-12, which enhances volumetric ESD beyond the best-known back-end-of-the-line-compatible dielectrics (115 J cm-3) (ref. 13). Second, to increase total energy storage, antiferroelectric superlattice engineering14 scales the energy storage performance beyond the conventional thickness limitations of HfO2-ZrO2-based (anti)ferroelectricity15 (100-nm regime). Third, to increase the storage per footprint, the superlattices are conformally integrated into three-dimensional capacitors, which boosts the areal ESD nine times and the areal power density 170 times that of the best-known electrostatic capacitors: 80 mJ cm-2 and 300 kW cm-2, respectively. This simultaneous demonstration of ultrahigh energy density and power density overcomes the traditional capacity-speed trade-off across the electrostatic-electrochemical energy storage hierarchy1,16. Furthermore, the integration of ultrahigh-density and ultrafast-charging thin films within a back-end-of-the-line-compatible process enables monolithic integration of on-chip microcapacitors5, which can unlock substantial energy storage and power delivery performance for electronic microsystems17-19.

2.
ACS Appl Mater Interfaces ; 15(13): 17344-17352, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951807

RESUMO

The lithium metal-solid-state electrolyte interface plays a critical role in the performance of solid-state batteries. However, operando characterization of the buried interface morphology in solid-state cells is particularly difficult because of the lack of direct optical access. Destructive techniques that require isolating the interface inadvertently modify the interface and cannot be used for operando monitoring. In this work, we introduce the concept of thermal wave sensing using modified 3ω sensors that are attached to the outside of the lithium metal-solid-state cells to noninvasively probe the morphology of the lithium metal-electrolyte interface. We show that the thermal interface resistance measured by the 3ω sensors relates directly to the physical morphology of the interface and demonstrates that 3ω thermal wave sensing can be used for noninvasive operando monitoring the morphology evolution of the lithium metal-solid-state electrolyte interface.

3.
Nat Commun ; 12(1): 6122, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34675199

RESUMO

Perspiration evaporation plays an indispensable role in human body heat dissipation. However, conventional textiles tend to focus on sweat removal and pay little attention to the basic thermoregulation function of sweat, showing limited evaporation ability and cooling efficiency in moderate/profuse perspiration scenarios. Here, we propose an integrated cooling (i-Cool) textile with unique functional structure design for personal perspiration management. By integrating heat conductive pathways and water transport channels decently, i-Cool exhibits enhanced evaporation ability and high sweat evaporative cooling efficiency, not merely liquid sweat wicking function. In the steady-state evaporation test, compared to cotton, up to over 100% reduction in water mass gain ratio, and 3 times higher skin power density increment for every unit of sweat evaporation are demonstrated. Besides, i-Cool shows about 3 °C cooling effect with greatly reduced sweat consumption than cotton in the artificial sweating skin test. The practical application feasibility of i-Cool design principles is well validated based on commercial fabrics. Owing to its exceptional personal perspiration management performance, we expect the i-Cool concept can provide promising design guidelines for next-generation perspiration management textiles.


Assuntos
Suor/química , Sudorese , Têxteis/análise , Regulação da Temperatura Corporal , Temperatura Alta , Humanos , Temperatura Cutânea , Suor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA