Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
J Inherit Metab Dis ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38757337

RESUMO

Genomic newborn screening (gNBS) is on the horizon given the decreasing costs of sequencing and the advanced understanding of the impact of genetic variants on health and diseases. Key to ongoing gNBS pilot studies is the selection of target diseases and associated genes to be included. In this study, we present a comprehensive analysis of seven published gene-disease lists from gNBS studies, evaluating gene-disease count, composition, group proportions, and ClinGen curations of individual disorders. Despite shared selection criteria, we observe substantial variation in total gene count (median 480, range 237-889) and disease group composition. An intersection was identified for 53 genes, primarily inherited metabolic diseases (83%, 44/53). Each study investigated a subset of exclusive gene-disease pairs, and the total number of exclusive gene-disease pairs was positively correlated with the total number of genes included per study. While most pairs receive "Definitive" or "Strong" ClinGen classifications, some are labeled as "Refuted" (n = 5) or "Disputed" (n = 28), particularly in genetic cardiac diseases. Importantly, 17%-48% of genes lack ClinGen curation. This study underscores the current absence of consensus recommendations for selection criteria for target diseases for gNBS resulting in diversity in proposed gene-disease pairs, their coupling with gene variations and the use of ClinGen curation. Our findings provide crucial insights into the selection of target diseases and accompanying gene variations for future gNBS program, emphasizing the necessity for ongoing collaboration and discussion about criteria harmonization for panel selection to ensure the screening's objectivity, integrity, and broad acceptance.

2.
Clin Genet ; 105(5): 499-509, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38221796

RESUMO

Hao-Fountain syndrome (HAFOUS, OMIM: #616863) is a neurodevelopmental disorder caused by pathogenic variants in the gene USP7 coding for USP7, a protein involved in several crucial cellular homeostatic mechanisms and the recently described MUST complex. The phenotype of HAFOUS is insufficiently understood, yet there is a great need to better understand the spectrum of disease, genotype-phenotype correlations, and disease trajectories. We now present a larger cohort of 32 additional individuals and provide further clinical information about six previously reported individuals. A questionnaire-based study was performed to characterize the phenotype of Hao-Fountain syndrome more clearly, to highlight new traits, and to better distinguish the disease from related neurodevelopmental disorders. In addition to confirming previously described features, we report hyperphagia and increased body weight in a subset of individuals. HAFOUS patients present an increased rate of birth complications, congenital anomalies, and abnormal pain thresholds. Speech impairment emerges as a potential hallmark of Hao-Fountain syndrome. Cognitive testing reports reveal borderline intellectual functioning on average, although some individuals score in the range of intellectual disability. Finally, we created a syndrome-specific severity score. This score neither indicates a sex- nor age-specific difference of clinical severity, yet highlights a more severe outcome when amino acid changes colocalize to the catalytic domain of the USP7 protein.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Peptidase 7 Específica de Ubiquitina/genética , Deficiência Intelectual/genética , Deficiência Intelectual/complicações , Anormalidades Múltiplas/genética , Anormalidades Craniofaciais/genética , Transtornos do Neurodesenvolvimento/genética , Fenótipo
3.
Kidney Int ; 105(4): 844-864, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38154558

RESUMO

Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below age 30 years. Many monogenic forms have been discovered due to comprehensive genetic testing like exome sequencing. However, disease-causing variants in known disease-associated genes only explain a proportion of cases. Here, we aim to unravel underlying molecular mechanisms of syndromic CAKUT in three unrelated multiplex families with presumed autosomal recessive inheritance. Exome sequencing in the index individuals revealed three different rare homozygous variants in FOXD2, encoding a transcription factor not previously implicated in CAKUT in humans: a frameshift in the Arabic and a missense variant each in the Turkish and the Israeli family with segregation patterns consistent with autosomal recessive inheritance. CRISPR/Cas9-derived Foxd2 knockout mice presented with a bilateral dilated kidney pelvis accompanied by atrophy of the kidney papilla and mandibular, ophthalmologic, and behavioral anomalies, recapitulating the human phenotype. In a complementary approach to study pathomechanisms of FOXD2-dysfunction-mediated developmental kidney defects, we generated CRISPR/Cas9-mediated knockout of Foxd2 in ureteric bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important for kidney/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a shift toward a stromal cell identity. Histology of Foxd2 knockout mouse kidneys confirmed increased fibrosis. Further, genome-wide association studies suggest that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Thus, our studies help in genetic diagnostics of monogenic CAKUT and in understanding of monogenic and multifactorial kidney diseases.


Assuntos
Estruturas Embrionárias , Fatores de Transcrição Forkhead , Nefropatias , Rim , Néfrons , Sistema Urinário , Anormalidades Urogenitais , Refluxo Vesicoureteral , Adulto , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Rim/anormalidades , Rim/embriologia , Nefropatias/genética , Camundongos Knockout , Néfrons/embriologia , Fatores de Transcrição/genética , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/metabolismo
4.
Genet Med ; 26(3): 101050, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38126281

RESUMO

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Assuntos
Anormalidades Múltiplas , Transtorno do Espectro Autista , Doenças do Desenvolvimento Ósseo , Anormalidades Craniofaciais , Surdez , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Metilação de DNA/genética , Transtorno do Espectro Autista/genética , Peptidase 7 Específica de Ubiquitina/genética , Epigenômica , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Biomarcadores
5.
NPJ Precis Oncol ; 7(1): 109, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884744

RESUMO

Analysis of selected cancer genes has become an important tool in precision oncology but cannot fully capture the molecular features and, most importantly, vulnerabilities of individual tumors. Observational and interventional studies have shown that decision-making based on comprehensive molecular characterization adds significant clinical value. However, the complexity and heterogeneity of the resulting data are major challenges for disciplines involved in interpretation and recommendations for individualized care, and limited information exists on how to approach multilayered tumor profiles in clinical routine. We report our experience with the practical use of data from whole-genome or exome and RNA sequencing and DNA methylation profiling within the MASTER (Molecularly Aided Stratification for Tumor Eradication Research) program of the National Center for Tumor Diseases (NCT) Heidelberg and Dresden and the German Cancer Research Center (DKFZ). We cover all relevant steps of an end-to-end precision oncology workflow, from sample collection, molecular analysis, and variant prioritization to assigning treatment recommendations and discussion in the molecular tumor board. To provide insight into our approach to multidimensional tumor profiles and guidance on interpreting their biological impact and diagnostic and therapeutic implications, we present case studies from the NCT/DKFZ molecular tumor board that illustrate our daily practice. This manual is intended to be useful for physicians, biologists, and bioinformaticians involved in the clinical interpretation of genome-wide molecular information.

6.
Artigo em Alemão | MEDLINE | ID: mdl-37831095

RESUMO

The application of high-throughput sequencing methods for population-based genomic newborn screening offers numerous opportunities for improving population health. The use of genome-based sequencing technology holds potential to enable the diagnosis of virtually any genetic disorder at an early stage and offers great flexibility when it comes to selection and expansion of target diseases. National and international efforts are therefore being made to investigate the ethical, legal, social, psychological, and technical aspects of genomic newborn screening. In addition to the many opportunities, there are numerous challenges and questions that remain to be answered: When and how should legal guardians be informed about such screening? Which diseases should be screened for? How should incidental findings or identification of a genetic predisposition be dealt with? Should data be stored long term and if so, how can this be done securely? Provided there is an appropriate regulatory framework and a transparent consent process, genomic newborn screening has the potential to fundamentally change the way in which we screen for congenital diseases. However, there is still much to be done. To achieve understanding and acceptance of genomic newborn screening amongst all stakeholders and thus to maximize its benefits for the population, a public discourse on the possibilities and limitations of genomic newborn screening is of critical importance. This article aims to provide an overview of the innovative technical developments in the field of human genetics, describe national and international approaches, and discuss challenges and opportunities of genomic newborn screening development.


Assuntos
Testes Genéticos , Triagem Neonatal , Recém-Nascido , Humanos , Alemanha , Genômica , Predisposição Genética para Doença/genética
7.
Front Oncol ; 13: 1193504, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37746285

RESUMO

Background: We determined the efficacy of free light chain (FLC) removal by regular dialysis equipment (high-flux filtration) with medium cutoff (MCO) membrane hemodialysis (HD) as an adjuvant treatment to standard chemotherapy for patients with acute kidney injury complicating multiple myeloma (MM) and its impact on further dialysis dependency. Methods: Sixty patients with acute dialysis-dependent renal failure secondary to MM were treated with MCO-HD (55 patients) or HCO (high cutoff)-HD (5 patients) as a control. FLC serum concentration, total protein, immunoglobulins, and LDH were measured throughout the dialysis therapy. The kidney function of the patients was followed up for 1 year. Results: The median age was 69 years; 25 female and 35 male patients were enrolled. HD significantly reduced FLC kappa levels in the MCO/HCO group by 58%/84% (MCO/HCO group; p < 0.05) and FLC lambda by 39%/33% (MCO/HCO group; p < 0.05). Single HD data (MCO) showed a relative reduction of 70% in kappa and 37% in lambda FLC concentration, as expected by the different sizes of the light chains. Renal function improved significantly and continuously from starting creatinine 5.7/3.8 mg/dl (MCO/HCO group) before HD to 1.4/2.0 mg/dl (MCO/HCO group; p < 0.001) after 1 year. No significant alteration of total protein, immunoglobulins, and LDH concentrations by HD (HCO and MCO group) was observed. After 1 year, 37 of 60 patients were alive and 34 of them were off dialysis. Conclusion: FLC elimination with MCO-HD is effective, technically easy, and less cost-intensive as compared with HCO-HD. Kidney function recovery in MM patients is achievable.

8.
Mol Genet Genomic Med ; 11(12): e2262, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37533374

RESUMO

BACKGROUND: Schaaf-Yang syndrome (SYS) is a neurodevelopmental disorder caused by truncating variants in the paternally expressed MAGEL2 gene in the Prader-Willi syndrome-region on chromosome 15q. In addition to hypotonia and intellectual disability, individuals with SYS are frequently affected by neonatal contractures and autism spectrum disorder. In this study, we focus on the burden of disease on patients and their families for the first time. METHODS: Based on the online SYS Patient Voices Survey the perspective of 81 primary caregivers on SYS was assessed. RESULTS: The perceived severity of muscular and developmental manifestations dominated the evaluation of the phenotype in early childhood, while behavioral issues were considered more impactful later in life. Importantly, an apprehension toward symptoms with a later onset was observed in caregivers of younger children. Available therapeutic options, while mostly effective, did not sufficiently alleviate the total burden of disease. Overall, parents stated that caring for an individual with SYS was very challenging, affecting their daily lives and long-term planning. CONCLUSION: Our study demonstrates the necessity for treatments that, adapted to age and in accordance with the caregivers' prioritization, improve the patients' medical condition and thus facilitate their and their families' social participation.


Assuntos
Transtorno do Espectro Autista , Proteínas Intrinsicamente Desordenadas , Criança , Recém-Nascido , Humanos , Pré-Escolar , Transtorno do Espectro Autista/genética , Cuidadores , Proteínas/genética , Efeitos Psicossociais da Doença , Percepção , Peptídeos e Proteínas de Sinalização Intracelular
9.
Hered Cancer Clin Pract ; 21(1): 11, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400873

RESUMO

A founder variant is a genetic alteration, that is inherited from a common ancestor together with a surrounding chromosomal segment, and is observed at a high frequency in a defined population. This founder effect occurs as a consequence of long-standing inbreeding of isolated populations. For high-risk cancer predisposition genes, such as BRCA1/2, the identification of founder variants in a certain population could help designing customized cost-effective cancer screening panels. This advantage has been best utilized in designing a customized breast cancer BRCA screening panel for the Ashkenazi Jews (AJ) population, composed of the three BRCA founder variants which account for approximately 90% of identified BRCA alterations. Indeed, the high prevalence of pathogenic BRCA1/2 variants among AJ (~ 2%) has additionally contributed to make population-based screening cost-effective in comparison to family-history-based screening. In Jordan there are multiple demographic characteristics supporting the proposal of a founder effect. A high consanguinity rate of ~ 57% in the nineties of the last century and ~ 30% more recently is a prominent factor, in addition to inbreeding which is often practiced by different sub-populations of the country.This review explains the concept of founder effect, then applies it to analyze published Jordanian BRCA variants, and concludes that nine pathogenic (P) and likely pathogenic (LP) BRCA2 variants together with one pathogenic BRCA1 variant are potential founder variants. Together they make up 43% and 55% of all identified BRCA1/2 alterations in the two largest studied cohorts of young patients and high-risk patients respectively. These variants were identified based on being recurrent and either specific to ethnic groups or being novel. In addition, the report highlights the required testing methodologies to validate these findings, and proposes a health economic evaluation model to test cost-effectiveness of a population-based customized BRCA screening panel for the Jordanian population. The aim of this report is to highlight the potential utilization of founder variants in establishing customized cancer predisposition services, in order to encourage more population-based genomic studies in Jordan and similar populations.

10.
Healthcare (Basel) ; 11(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37297742

RESUMO

BACKGROUND: The COVID-19 pandemic has led to a flood of-often contradictory-evidence. HCWs had to develop strategies to locate information that supported their work. We investigated the information-seeking of different HCW groups in Germany. METHODS: In December 2020, we conducted online surveys on COVID-19 information sources, strategies, assigned trustworthiness, and barriers-and in February 2021, on COVID-19 vaccination information sources. Results were analyzed descriptively; group comparisons were performed using χ2-tests. RESULTS: For general COVID-19-related medical information (413 participants), non-physicians most often selected official websites (57%), TV (57%), and e-mail/newsletters (46%) as preferred information sources-physicians chose official websites (63%), e-mail/newsletters (56%), and professional journals (55%). Non-physician HCWs used Facebook/YouTube more frequently. The main barriers were insufficient time and access issues. Non-physicians chose abstracts (66%), videos (45%), and webinars (40%) as preferred information strategy; physicians: overviews with algorithms (66%), abstracts (62%), webinars (48%). Information seeking on COVID-19 vaccination (2700 participants) was quite similar, however, with newspapers being more often used by non-physicians (63%) vs. physician HCWs (70%). CONCLUSION: Non-physician HCWs more often consulted public information sources. Employers/institutions should ensure the supply of professional, targeted COVID-19 information for different HCW groups.

11.
Transl Oncol ; 35: 101706, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37327584

RESUMO

Homologous recombination deficiency (HRD) is a predictive marker for response to poly (ADP-ribose) polymerase inhibitors (PARPi) in ovarian carcinoma. HRD scores have entered routine diagnostics, but the influence of algorithms, parameters and confounders has not been analyzed comprehensively. A series of 100 poorly differentiated ovarian carcinoma samples was analyzed using whole exome sequencing (WES) and genotyping. Tumor purity was determined using conventional pathology, digital pathology, and two bioinformatic methods. HRD scores were calculated from copy number profiles determined by Sequenza and by Sclust either with or without fixed tumor purity. Tumor purity determination by digital pathology combined with a tumory purity informed variant of Sequenza served as reference method for HRD scoring. Seven tumors had deleterious mutations in BRCA1/2, 12 tumors had deleterious mutations in other homologous recombination repair (HRR) genes, 18 tumors had variants of unknown significance (VUS) in BRCA1/2 or other HRR genes, while the remaining 63 tumors had no relevant alterations. Using the reference method for HRD scoring, 68 tumors were HRD-positive. HRDsum determined by WES correlated strongly with HRDsum determined by single nucleotide polymorphism (SNP) arrays (R = 0.85). Conventional pathology systematically overestimated tumor purity by 8% compared to digital pathology. All investigated methods agreed on classifying the deleterious BRCA1/2-mutated tumors as HRD-positive, but discrepancies were observed for some of the remaining tumors. Discordant HRD classification of 11% of the tumors was observed comparing the tumor purity uninformed default of Sequenza and the reference method. In conclusion, tumor purity is a critical factor for the determination of HRD scores. Assistance by digital pathology helps to improve accuracy and imprecision of its estimation.

13.
medRxiv ; 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36993625

RESUMO

Background: Congenital anomalies of the kidney and urinary tract (CAKUT) are the predominant cause for chronic kidney disease below 30 years of age. Many monogenic forms have been discovered mainly due to comprehensive genetic testing like exome sequencing (ES). However, disease-causing variants in known disease-associated genes still only explain a proportion of cases. Aim of this study was to unravel the underlying molecular mechanism of syndromic CAKUT in two multiplex families with presumed autosomal recessive inheritance. Methods and Results: ES in the index individuals revealed two different rare homozygous variants in FOXD2, a transcription factor not previously implicated in CAKUT in humans: a frameshift in family 1 and a missense variant in family 2 with family segregation patterns consistent with autosomal-recessive inheritance. CRISPR/Cas9-derived Foxd2 knock-out (KO) mice presented with bilateral dilated renal pelvis accompanied by renal papilla atrophy while extrarenal features included mandibular, ophthalmologic, and behavioral anomalies, recapitulating the phenotype of humans with FOXD2 dysfunction. To study the pathomechanism of FOXD2-dysfunction-mediated developmental renal defects, in a complementary approach, we generated CRISPR/Cas9-mediated KO of Foxd2 in ureteric-bud-induced mouse metanephric mesenchyme cells. Transcriptomic analyses revealed enrichment of numerous differentially expressed genes important in renal/urogenital development, including Pax2 and Wnt4 as well as gene expression changes indicating a cell identity shift towards a stromal cell identity. Histology of Foxd2 KO mouse kidneys confirmed increased fibrosis. Further, GWAS data (genome-wide association studies) suggests that FOXD2 could play a role for maintenance of podocyte integrity during adulthood. Conclusions: In summary, our data implicate that FOXD2 dysfunction is a very rare cause of autosomal recessive syndromic CAKUT and suggest disturbances of the PAX2-WNT4 cell signaling axis contribute to this phenotype.

14.
Mod Pathol ; 36(3): 100033, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36931740

RESUMO

Image analysis assistance with artificial intelligence (AI) has become one of the great promises over recent years in pathology, with many scientific studies being published each year. Nonetheless, and perhaps surprisingly, only few image AI systems are already in routine clinical use. A major reason for this is the missing validation of the robustness of many AI systems: beyond a narrow context, the large variability in digital images due to differences in preanalytical laboratory procedures, staining procedures, and scanners can be challenging for the subsequent image analysis. Resulting faulty AI analysis may bias the pathologist and contribute to incorrect diagnoses and, therefore, may lead to inappropriate therapy or prognosis. In this study, a pretrained AI assistance tool for the quantification of Ki-67, estrogen receptor (ER), and progesterone receptor (PR) in breast cancer was evaluated within a realistic study set representative of clinical routine on a total of 204 slides (72 Ki-67, 66 ER, and 66 PR slides). This represents the cohort with the largest image variance for AI tool evaluation to date, including 3 staining systems, 5 whole-slide scanners, and 1 microscope camera. These routine cases were collected without manual preselection and analyzed by 10 participant pathologists from 8 sites. Agreement rates for individual pathologists were found to be 87.6% for Ki-67 and 89.4% for ER/PR, respectively, between scoring with and without the assistance of the AI tool regarding clinical categories. Individual AI analysis results were confirmed by the majority of pathologists in 95.8% of Ki-67 cases and 93.2% of ER/PR cases. The statistical analysis provides evidence for high interobserver variance between pathologists (Krippendorff's α, 0.69) in conventional immunohistochemical quantification. Pathologist agreement increased slightly when using AI support (Krippendorff α, 0.72). Agreement rates of pathologist scores with and without AI assistance provide evidence for the reliability of immunohistochemical scoring with the support of the investigated AI tool under a large number of environmental variables that influence the quality of the diagnosed tissue images.


Assuntos
Inteligência Artificial , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/patologia , Antígeno Ki-67/análise , Reprodutibilidade dos Testes , Receptores de Progesterona/análise , Receptores de Estrogênio/análise , Estrogênios
15.
BMC Public Health ; 23(1): 394, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849938

RESUMO

BACKGROUND: Right from the beginning of the SARS-CoV-2 pandemic the general public faced the challenge to find reliable and understandable information in the overwhelming flood of information. To enhance informed decision-making, evidence-based information should be provided. Aim was to explore the general public's information needs and preferences on COVID-19 as well as the barriers to accessing evidence-based information. METHODS: We performed a cross-sectional study. Nine hundred twenty-seven panel members were invited to an online survey (12/2020-02/2021). The HeReCa-online-panel is installed at the Martin Luther University Halle-Wittenberg to assess regularly the general public's view on health issues in five regions in Germany. The survey was set up in LimeSurvey, with nine items, multiple-choice and open-ended questions that allowed to gather qualitative data. Quantitative data were analysed descriptively and a content analysis was carried out to categorise the qualitative data. RESULTS: Six hundred thirty-six panel members provided data; mean age 52 years, 56.2% female, and 64.9% with higher education qualifications. Asked about relevant topics related to COVID-19, most participants selected vaccination (63.8%), infection control (52%), and long-term effects (47.8%). The following 11 categories were derived from the qualitative analysis representing the topics of interest: vaccination, infection control, long-term effects, therapies, test methods, mental health, symptoms, structures for pandemic control, infrastructure in health care, research. Participants preferred traditional media (TV 70.6%; radio 58.5%; newspaper 32.7%) to social media, but also used the internet as sources of information, becoming aware of new information on websites (28.5%) or via email/newsletter (20.1%). The knowledge question (Which European country is most affected by the SARS-CoV-2 pandemic?) was correctly answered by 7.5% of participants. The Robert Koch Institute (93.7%) and the World Health Organization (78%) were well known, while other organisations providing health information were rarely known (< 10%). Barriers to accessing trustworthy information were lack of time (30.7%), little experience (23.1%), uncertainty about how to get access (22.2%), complexity and difficulties in understanding (23.9%), and a lack of target group orientation (15,3%). CONCLUSIONS: There are extensive information needs regarding various aspects on COVID-19 among the general population. In addition, target-specific dissemination strategies are still needed to reach different groups.


Assuntos
COVID-19 , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , COVID-19/epidemiologia , SARS-CoV-2 , Estudos Transversais , Academias e Institutos , Conscientização
16.
Comput Struct Biotechnol J ; 21: 1077-1083, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789265

RESUMO

The widespread use of high-throughput sequencing techniques is leading to a rapidly increasing number of disease-associated variants of unknown significance and candidate genes. Integration of knowledge concerning their genetic, protein as well as functional and conservational aspects is necessary for an exhaustive assessment of their relevance and for prioritization of further clinical and functional studies investigating their role in human disease. To collect the necessary information, a multitude of different databases has to be accessed and data extraction from the original sources commonly is not user-friendly and requires advanced bioinformatics skills. This leads to a decreased data accessibility for a relevant number of potential users such as clinicians, geneticist, and clinical researchers. Here, we present aRgus (https://argus.urz.uni-heidelberg.de/), a standalone webtool for simple extraction and intuitive visualization of multi-layered gene, protein, variant, and variant effect prediction data. aRgus provides interactive exploitation of these data within seconds for any known gene of the human genome. In contrast to existing online platforms for compilation of variant data, aRgus complements visualization of chromosomal exon-intron structure and protein domain annotation with ClinVar and gnomAD variant distributions as well as position-specific variant effect prediction score modeling. aRgus thereby enables timely assessment of protein regions vulnerable to variation with single amino acid resolution and provides numerous applications in variant and protein domain interpretation as well as in the design of in vitro experiments.

17.
Nat Commun ; 14(1): 1066, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828816

RESUMO

The hypothalamic neuropeptide oxytocin (OT) exerts prominent analgesic effects via central and peripheral action. However, the precise analgesic pathways recruited by OT are largely elusive. Here we discovered a subset of OT neurons whose projections preferentially terminate on OT receptor (OTR)-expressing neurons in the ventrolateral periaqueductal gray (vlPAG). Using a newly generated line of transgenic rats (OTR-IRES-Cre), we determined that most of the vlPAG OTR expressing cells targeted by OT projections are GABAergic. Ex vivo stimulation of parvocellular OT axons in the vlPAG induced local OT release, as measured with OT sensor GRAB. In vivo, optogenetically-evoked axonal OT release in the vlPAG of as well as chemogenetic activation of OTR vlPAG neurons resulted in a long-lasting increase of vlPAG neuronal activity. This lead to an indirect suppression of sensory neuron activity in the spinal cord and strong analgesia in both female and male rats. Altogether, we describe an OT-vlPAG-spinal cord circuit that is critical for analgesia in both inflammatory and neuropathic pain models.


Assuntos
Neuralgia , Ocitocina , Ratos , Masculino , Feminino , Animais , Ocitocina/metabolismo , Substância Cinzenta Periaquedutal/fisiologia , Neurônios/metabolismo , Analgésicos/farmacologia , Neuralgia/metabolismo
19.
Dis Model Mech ; 16(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36637363

RESUMO

Previous studies in mice have utilized Magel2 gene deletion models to examine the consequences of its absence. We report the generation, molecular validation and phenotypic characterization of a novel rat model with a truncating Magel2 mutation modeling variants associated with Schaaf-Yang syndrome-causing mutations. Within the hypothalamus, a brain region in which human MAGEL2 is paternally expressed, we demonstrated, at the level of transcript and peptide detection, that rat Magel2 exhibits a paternal, parent-of-origin effect. In evaluations of behavioral features across several domains, juvenile Magel2 mutant rats displayed alterations in anxiety-like behavior and sociability measures. Moreover, the analysis of peripheral organ systems detected alterations in body composition, cardiac structure and function, and breathing irregularities in Magel2 mutant rats. Several of these findings are concordant with reported mouse phenotypes, indicating the conservation of MAGEL2 function across rodent species. Our comprehensive analysis revealing impairments across multiple domains demonstrates the tractability of this model system for the study of truncating MAGEL2 mutations.


Assuntos
Síndrome de Prader-Willi , Humanos , Ratos , Camundongos , Animais , Síndrome de Prader-Willi/genética , Proteínas/metabolismo , Fenótipo , Encéfalo/metabolismo , Modelos Biológicos , Antígenos de Neoplasias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA