Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Genomics ; 20(1): 905, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31775618

RESUMO

BACKGROUND: The availability of thousands of complete rice genome sequences from diverse varieties and accessions has laid the foundation for in-depth exploration of the rice genome. One drawback to these collections is that most of these rice varieties have long life cycles, and/or low transformation efficiencies, which limits their usefulness as model organisms for functional genomics studies. In contrast, the rice variety Kitaake has a rapid life cycle (9 weeks seed to seed) and is easy to transform and propagate. For these reasons, Kitaake has emerged as a model for studies of diverse monocotyledonous species. RESULTS: Here, we report the de novo genome sequencing and analysis of Oryza sativa ssp. japonica variety KitaakeX, a Kitaake plant carrying the rice XA21 immune receptor. Our KitaakeX sequence assembly contains 377.6 Mb, consisting of 33 scaffolds (476 contigs) with a contig N50 of 1.4 Mb. Complementing the assembly are detailed gene annotations of 35,594 protein coding genes. We identified 331,335 genomic variations between KitaakeX and Nipponbare (ssp. japonica), and 2,785,991 variations between KitaakeX and Zhenshan97 (ssp. indica). We also compared Kitaake resequencing reads to the KitaakeX assembly and identified 219 small variations. The high-quality genome of the model rice plant KitaakeX will accelerate rice functional genomics. CONCLUSIONS: The high quality, de novo assembly of the KitaakeX genome will serve as a useful reference genome for rice and will accelerate functional genomics studies of rice and other species.


Assuntos
Genoma de Planta , Genômica , Oryza/genética , Sequenciamento Completo do Genoma , Biologia Computacional/métodos , Variação Genética , Genômica/métodos , Anotação de Sequência Molecular , Oryza/classificação , Fenótipo
2.
Rice (N Y) ; 12(1): 52, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31321562

RESUMO

BACKGROUND: Breeding for genes controlling key agronomic traits is an important goal of rice genetic improvement. To gain insight into genes controlling grain morphology, we screened M3 plants derived from 1,000 whole-genome sequenced (WGS) M2 Kitaake mutants to identify lines with altered grain size. RESULTS: In this study, we isolated a mutant, named fast-neutron (FN) 60-4, which exhibits a significant reduction in grain size. We crossed FN60-4 with the parental line Kitaake and analyzed the resulting backcross population. Segregation analysis of 113 lines from the BC2F2 population revealed that the mutant phenotype is controlled by a single semi-dominant locus. Mutant FN60-4 is reduced 20% in plant height and 8.8% in 1000-grain weight compared with Kitaake. FN60-4 also exhibits an 8% reduction in cell number and a 9% reduction in cell length along the vertical axis of the glume. We carried out whole-genome sequencing of DNA pools extracted from segregants with long grains or short grains, and revealed that one gene, LOC_Os09g02650, cosegregated with the grain size phenotype in the BC1F2 and BC2F2 populations. This mutant allele was named grain shape 9-1 (gs9-1). gs9-1 carries a 3-bp deletion that affects two amino acids. This locus is a new allele of the BC12/GDD1/MTD1 gene that encodes a kinesin-like protein involved in cell-cycle progression, cellulose microfibril deposition and gibberellic acid (GA) biosynthesis. The GA biosynthesis-related gene KO2 is down-regulated in gs9-1. The dwarf phenotype of gs9-1 can be rescued by adding exogenous GA3. In contrast to the phenotypes for the other alleles, the gs9-1 is less severe, consistent with the nature of the mutation, which does not disrupt the open reading frame as observed for the other alleles. CONCLUSIONS: In this study, we isolated a mutant, which exhibits altered grain shape and identified the mutated gene, gs9-1. Our study reveals that gs9-1 is a semi-dominant gene that carries a two-amino acid mutation. gs9-1 is allelic to the BC12/GDD1/MTD1 gene involved in GA biosynthesis. These results demonstrate the efficiency and convenience of cloning genes from the whole-genome sequenced Kitaake mutant population to advance investigations into genes controlling key agronomic traits in rice.

3.
Front Microbiol ; 9: 1016, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013517

RESUMO

[This corrects the article on p. 147 in vol. 2, PMID: 21808633.].

4.
Plant Cell ; 29(6): 1218-1231, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28576844

RESUMO

The availability of a whole-genome sequenced mutant population and the cataloging of mutations of each line at a single-nucleotide resolution facilitate functional genomic analysis. To this end, we generated and sequenced a fast-neutron-induced mutant population in the model rice cultivar Kitaake (Oryza sativa ssp japonica), which completes its life cycle in 9 weeks. We sequenced 1504 mutant lines at 45-fold coverage and identified 91,513 mutations affecting 32,307 genes, i.e., 58% of all rice genes. We detected an average of 61 mutations per line. Mutation types include single-base substitutions, deletions, insertions, inversions, translocations, and tandem duplications. We observed a high proportion of loss-of-function mutations. We identified an inversion affecting a single gene as the causative mutation for the short-grain phenotype in one mutant line. This result reveals the usefulness of the resource for efficient, cost-effective identification of genes conferring specific phenotypes. To facilitate public access to this genetic resource, we established an open access database called KitBase that provides access to sequence data and seed stocks. This population complements other available mutant collections and gene-editing technologies. This work demonstrates how inexpensive next-generation sequencing can be applied to generate a high-density catalog of mutations.


Assuntos
Genoma de Planta/genética , Genômica/métodos , Oryza/genética , DNA de Plantas/genética , Mutação/genética , Análise de Sequência de DNA
6.
Front Microbiol ; 6: 604, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26157428

RESUMO

Genomes were obtained for three closely related strains of Synechococcus that are representative of putative ecotypes (PEs) that predominate at different depths in the 1 mm-thick, upper-green layer in the 60°C mat of Mushroom Spring, Yellowstone National Park, and exhibit different light adaptation and acclimation responses. The genomes were compared to the published genome of a previously obtained, closely related strain from a neighboring spring, and differences in both gene content and orthologous gene alleles between high-light-adapted and low-light-adapted strains were identified. Evidence of genetic differences that relate to adaptation to light intensity and/or quality, CO2uptake, nitrogen metabolism, organic carbon metabolism, and uptake of other nutrients were found between strains of the different putative ecotypes. In situ diel transcription patterns of genes, including genes unique to either low-light-adapted or high-light-adapted strains and different alleles of an orthologous photosystem gene, revealed that expression is fine-tuned to the different light environments experienced by ecotypes prevalent at various depths in the mat. This study suggests that strains of closely related PEs have different genomic adaptations that enable them to inhabit distinct ecological niches while living in close proximity within a microbial community.

7.
Genome Biol Evol ; 6(9): 2557-66, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25364804

RESUMO

Lignocellulosic plant material is a viable source of biomass to produce alternative energy including ethanol and other biofuels. However, several factors­including toxic by products from biomass pretreatment and poor fermentation of xylose and other pentose sugars­currently limit the efficiency of microbial biofuel production. To begin to understand the genetic basis of desirable traits, we characterized three strains of Saccharomyces cerevisiae with robust growth in a pretreated lignocellulosic hydrolysate or tolerance to stress conditions relevant to industrial biofuel production, through genome and transcriptome sequencing analysis. All stress resistant strains were highly mosaic, suggesting that genetic admixture may contribute to novel allele combinations underlying these phenotypes. Strain-specific gene sets not found in the lab strain were functionally linked to the tolerances of particular strains. Furthermore,genes with signatures of evolutionary selection were enriched for functional categories important for stress resistance and included stress-responsive signaling factors. Comparison of the strains' transcriptomic responses to heat and ethanol treatment­two stresses relevant to industrial bioethanol production­pointed to physiological processes that were related to particular stress resistance profiles. Many of the genotype-by-environment expression responses occurred at targets of transcription factors with signatures of positive selection, suggesting that these strains have undergone positive selection for stress tolerance. Our results generate new insights into potential mechanisms of tolerance to stresses relevant to biofuel production, including ethanol and heat, present a backdrop for further engineering, and provide glimpses into the natural variation of stress tolerance in wild yeast strains.


Assuntos
Etanol/metabolismo , Genoma Fúngico , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Metabolismo Energético , Fermentação , Genômica , Polimorfismo de Nucleotídeo Único , Saccharomyces cerevisiae/crescimento & desenvolvimento
8.
Elife ; 3: e01322, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24596148

RESUMO

By directed evolution in the laboratory, we previously generated populations of Escherichia coli that exhibit a complex new phenotype, extreme resistance to ionizing radiation (IR). The molecular basis of this extremophile phenotype, involving strain isolates with a 3-4 order of magnitude increase in IR resistance at 3000 Gy, is now addressed. Of 69 mutations identified in one of our most highly adapted isolates, functional experiments demonstrate that the IR resistance phenotype is almost entirely accounted for by only three of these nucleotide changes, in the DNA metabolism genes recA, dnaB, and yfjK. Four additional genetic changes make small but measurable contributions. Whereas multiple contributions to IR resistance are evident in this study, our results highlight a particular adaptation mechanism not adequately considered in studies to date: Genetic innovations involving pre-existing DNA repair functions can play a predominant role in the acquisition of an IR resistance phenotype. DOI: http://dx.doi.org/10.7554/eLife.01322.001.


Assuntos
Adaptação Biológica , Enzimas Reparadoras do DNA/genética , Reparo do DNA , Escherichia coli/fisiologia , Escherichia coli/efeitos da radiação , Evolução Molecular , Radiação Ionizante , Análise Mutacional de DNA , Enzimas Reparadoras do DNA/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Mutação
9.
J Bacteriol ; 194(24): 7016-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23209255

RESUMO

The DNA sequences of chromosomes I and II of Rhodobacter sphaeroides strain 2.4.1 have been revised, and the annotation of the entire genomic sequence, including both chromosomes and the five plasmids, has been updated. Errors in the originally published sequence have been corrected, and ~11% of the coding regions in the original sequence have been affected by the revised annotation.


Assuntos
Genoma Bacteriano , Rhodobacter sphaeroides/genética , Cromossomos Bacterianos , DNA Bacteriano/genética , Anotação de Sequência Molecular , Dados de Sequência Molecular , Plasmídeos/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
10.
Bioinformatics ; 28(10): 1303-6, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22451271

RESUMO

MOTIVATION: The sequencing of over a thousand natural strains of the model plant Arabidopsis thaliana is producing unparalleled information at the genetic level for plant researchers. To enable the rapid exploitation of these data for functional proteomics studies, we have created a resource for the visualization of protein information and proteomic datasets for sequenced natural strains of A. thaliana. RESULTS: The 1001 Proteomes portal can be used to visualize amino acid substitutions or non-synonymous single-nucleotide polymorphisms in individual proteins of A. thaliana based on the reference genome Col-0. We have used the available processed sequence information to analyze the conservation of known residues subject to protein phosphorylation among these natural strains. The substitution of amino acids in A. thaliana natural strains is heavily constrained and is likely a result of the conservation of functional attributes within proteins. At a practical level, we demonstrate that this information can be used to clarify ambiguously defined phosphorylation sites from phosphoproteomic studies. Protein sets of available natural variants are available for download to enable proteomic studies on these accessions. Together this information can be used to uncover the possible roles of specific amino acids in determining the structure and function of proteins in the model plant A. thaliana. An online portal to enable the community to exploit these data can be accessed at http://1001proteomes.masc-proteomics.org/


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Substituição de Aminoácidos , DNA de Plantas , Bases de Dados de Proteínas , Fosforilação , Polimorfismo de Nucleotídeo Único , Processamento de Proteína Pós-Traducional , Proteoma/genética , Proteômica , Análise de Sequência de DNA
11.
Front Microbiol ; 2: 147, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21808633

RESUMO

Carbon monoxide (CO), well known as a toxic gas, is increasingly recognized as a key metabolite and signaling molecule. Microbial utilization of CO is quite common, evidenced by the rapid escalation in description of new species of CO-utilizing bacteria and archaea. Carbon monoxide dehydrogenase (CODH), the protein complex that enables anaerobic CO-utilization, has been well-characterized from an increasing number of microorganisms, however the regulation of multiple CO-related gene clusters in single isolates remains unexplored. Many species are extraordinarily resistant to high CO concentrations, thriving under pure CO at more than one atmosphere. We hypothesized that, in strains that can grow exclusively on CO, both carbon acquisition via the CODH/acetyl CoA synthase complex and energy conservation via a CODH-linked hydrogenase must be differentially regulated in response to the availability of CO. The CO-sensing transcriptional activator, CooA is present in most CO-oxidizing bacteria. Here we present a genomic and phylogenetic survey of CODH operons and cooA genes found in CooA-containing bacteria. Two distinct groups of CooA homologs were found: one clade (CooA-1) is found in the majority of CooA-containing bacteria, whereas the other clade (CooA-2) is found only in genomes that encode multiple CODH clusters, suggesting that the CooA-2 might be important for cross-regulation of competing CODH operons. Recombinant CooA-1 and CooA-2 regulators from the prototypical CO-utilizing bacterium Carboxydothermus hydrogenoformans were purified, and promoter binding analyses revealed that CooA-1 specifically regulates the hydrogenase-linked CODH, whereas CooA-2 is able to regulate both the hydrogenase-linked CODH and the CODH/ACS operons. These studies point to the ability of dual CooA homologs to partition CO into divergent CO-utilizing pathways resulting in efficient consumption of a single limiting growth substrate available across a wide range of concentrations.

12.
J Mol Evol ; 69(2): 194-202, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19639236

RESUMO

Genes with overlapping expression and function may gradually diverge despite retaining some common functions. To test whether such genes show distinct patterns of molecular evolution within species, we examined sequence variation at the bric à brac (bab) locus of Drosophila melanogaster. This locus is composed of two anciently duplicated paralogs, bab1 and bab2, which are involved in patterning the adult abdomen, legs, and ovaries. We have sequenced the 148 kb genomic region spanning the bab1 and bab2 genes from 94 inbred lines of D. melanogaster sampled from a single location. Two non-coding regions, one in each paralog, appear to be under selection. The strongest evidence of directional selection is found in a region of bab2 that has no known functional role. The other region is located in the bab1 paralog and is known to contain a cis-regulatory element that controls sex-specific abdominal pigmentation. The coding region of bab1 appears to be under stronger functional constraint than the bab2 coding sequences. Thus, the two paralogs are evolving under different selective regimes in the same natural population, illuminating the different evolutionary trajectories of partially redundant duplicate genes.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Homologia de Sequência do Ácido Nucleico , Fatores de Transcrição/genética , Animais , Sequência de Bases , Genes de Insetos , Variação Genética
13.
Hum Mol Genet ; 17(24): 3887-96, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18782849

RESUMO

It has been suggested that autism, like other complex genetic disorders, may benefit from the study of rare or Mendelian variants associated with syndromic or non-syndromic forms of the disease. However, there are few examples in which common variation in genes causing a Mendelian neuropsychiatric disorder has been shown to contribute to disease susceptibility in an allied common condition. Joubert syndrome (JS) is a rare recessively inherited disorder, with mutations reported at several loci including the gene Abelson's Helper Integration 1 (AHI1). A significant proportion of patients with JS, in some studies up to 40%, have been diagnosed with autism spectrum disorder (ASD) and several linkage studies in ASD have nominally implicated the region on 6q where AHI1 resides. To evaluate AHI1 in ASD, we performed a three-stage analysis of AHI1 as an a priori candidate gene for autism. Re-sequencing was first used to screen AHI1, followed by two subsequent association studies, one limited and one covering the gene more completely, in Autism Genetic Resource Exchange (AGRE) families. In stage 3, we found evidence of an associated haplotype in AHI1 with ASD after correction for multiple comparisons, in a region of the gene that had been previously associated with schizophrenia. These data suggest a role for AHI1 in common disorders affecting human cognition and behavior.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno Autístico/genética , Cerebelo/anormalidades , Variação Genética , Proteínas Adaptadoras de Transporte Vesicular , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Esquizofrenia/genética , Síndrome
14.
PLoS One ; 2(9): e903, 2007 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-17878938

RESUMO

BACKGROUND: AMP-activated protein kinase (AMPK) is a heterotrimeric enzyme that is evolutionarily conserved from yeast to mammals and functions to maintain cellular and whole body energy homeostasis. Studies in experimental animals demonstrate that activation of AMPK in skeletal muscle protects against insulin resistance, type 2 diabetes and obesity. The regulatory gamma(3) subunit of AMPK is expressed exclusively in skeletal muscle; however, its importance in controlling overall AMPK activity is unknown. While evidence is emerging that gamma subunit mutations interfere specifically with AMP activation, there remains some controversy regarding the impact of gamma subunit mutations. Here we report the first gain-of-function mutation in the muscle-specific regulatory gamma(3) subunit in humans. METHODS AND FINDINGS: We sequenced the exons and splice junctions of the AMPK gamma(3) gene (PRKAG3) in 761 obese and 759 lean individuals, identifying 87 sequence variants including a novel R225W mutation in subjects from two unrelated families. The gamma(3) R225W mutation is homologous in location to the gamma(2)R302Q mutation in patients with Wolf-Parkinson-White syndrome and to the gamma(3)R225Q mutation originally linked to an increase in muscle glycogen content in purebred Hampshire Rendement Napole (RN-) pigs. We demonstrate in differentiated muscle satellite cells obtained from the vastus lateralis of R225W carriers that the mutation is associated with an approximate doubling of both basal and AMP-activated AMPK activities. Moreover, subjects bearing the R225W mutation exhibit a approximately 90% increase of skeletal muscle glycogen content and a approximately 30% decrease in intramuscular triglyceride (IMTG). CONCLUSIONS: We have identified for the first time a mutation in the skeletal muscle-specific regulatory gamma(3) subunit of AMPK in humans. The gamma(3)R225W mutation has significant functional effects as demonstrated by increases in basal and AMP-activated AMPK activities, increased muscle glycogen and decreased IMTG. Overall, these findings are consistent with an important regulatory role for AMPK gamma(3) in human muscle energy metabolism.


Assuntos
Proteínas Quinases Ativadas por AMP/genética , Glicogênio/metabolismo , Músculo Esquelético/metabolismo , Mutação , Triglicerídeos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Sequência de Bases , Western Blotting , Primers do DNA , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA