Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Commun ; 6(4): fcae162, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39051027

RESUMO

The dynamic phase of preclinical Alzheimer's disease, as characterized by accumulating cortical amyloid-ß, is a window of opportunity for amyloid-ß-lowering therapies to have greater efficacy. Biomarkers that accurately predict amyloid-ß accumulation may be of critical importance for participant inclusion in secondary prevention trials and thus enhance development of early Alzheimer's disease therapies. We compared the abilities of baseline plasma pTau181, pTau217 and amyloid-ß PET load to predict future amyloid-ß accumulation in asymptomatic elderly. In this longitudinal cohort study, baseline plasma pTau181 and pTau217 were quantified using single molecule array assays in cognitively unimpaired elderly selected from the community-recruited F-PACK cohort based on the availability of baseline plasma samples and longitudinal amyloid-ß PET data (median time interval = 5 years, range 2-10 years). The predictive abilities of pTau181, pTau217 and PET-based amyloid-ß measures for PET-based amyloid-ß accumulation were investigated using receiver operating characteristic analyses, correlations and stepwise regression analyses. We included 75 F-PACK subjects (mean age = 70 years, 48% female), of which 16 were classified as amyloid-ß accumulators [median (interquartile range) Centiloid rate of change = 3.42 (1.60) Centiloids/year). Plasma pTau181 [area under the curve (95% confidence interval) = 0.72 (0.59-0.86)] distinguished amyloid-ß accumulators from non-accumulators with similar accuracy as pTau217 [area under the curve (95% confidence interval) = 0.75 (0.62-0.88) and amyloid-ß PET [area under the curve (95% confidence interval) = 0.72 (0.56-0.87)]. Plasma pTau181 and pTau217 strongly correlated with each other (r = 0.93, Pfalse discovery rate < 0.001) and, together with amyloid-ß PET, similarly correlated with amyloid-ß rate of change (r pTau181 = 0.33, r pTau217 = 0.36, r amyloid-ß PET = 0.35, all Pfalse discovery rate ≤ 0.01). Addition of plasma pTau181, plasma pTau217 or amyloid-ß PET to a linear demographic model including age, sex and APOE-ε4 carriership similarly improved the prediction of amyloid-ß accumulation (ΔAkaike information criterion ≤ 4.1). In a multimodal biomarker model including all three biomarkers, each biomarker lost their individual predictive ability. These findings indicate that plasma pTau181, plasma pTau217 and amyloid-ß PET convey overlapping information and therefore predict the dynamic phase of asymptomatic amyloid-ß accumulation with comparable performances. In clinical trial recruitment, confirmatory PET scans following blood-based prescreening might thus not provide additional value for detecting participants in these early disease stages who are destined to accumulate cortical amyloid-ß. Given the moderate performances, future studies should investigate whether integrating plasma pTau species with other factors can improve performance and thus enhance clinical and research utility.

2.
Acta Neuropathol ; 145(2): 175-195, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36481964

RESUMO

The major neuropathological hallmarks of Alzheimer's disease (AD) are amyloid ß (Aß) plaques and neurofibrillary tangles (NFT), accompanied by neuroinflammation and neuronal loss. Increasing evidence is emerging for the activation of the canonical NOD-, LRR- and pyrin domain-containing 3 (NLRP3) inflammasome in AD. However, the mechanisms leading to neuronal loss in AD and the involvement of glial cells in these processes are still not clear. The aim of this study was to investigate the contribution of pyroptosis, a pro-inflammatory mechanism of cell death downstream of the inflammasome, to neurodegeneration in AD. Immunohistochemistry and biochemical analysis of protein levels were performed on human post-mortem brain tissue. We investigated the presence of cleaved gasdermin D (GSDMD), the pyroptosis effector protein, as well as the NLRP3 inflammasome-forming proteins, in the medial temporal lobe of 23 symptomatic AD, 25 pathologically defined preclinical AD (p-preAD) and 21 non-demented control cases. Cleaved GSDMD was detected in microglia, but also in astrocytes and in few pyramidal neurons in the first sector of the cornu ammonis (CA1) of the hippocampus and the temporal cortex of Brodmann area 36. Only microglia expressed all NLRP3 inflammasome-forming proteins (i.e., ASC, NLRP3, caspase-1). Cleaved GSDMD-positive astrocytes and neurons exhibited caspase-8 and non-canonical inflammasome protein caspase-4, respectively, potentially indicating alternative pathways for GSDMD cleavage. Brains of AD patients exhibited increased numbers of cleaved GSDMD-positive cells. Cleaved GSDMD-positive microglia and astrocytes were found in close proximity to Aß plaques, while cleaved GSDMD-positive neurons were devoid of NFTs. In CA1, NLRP3-positive microglia and cleaved GSDMD-positive neurons were associated with local neuronal loss, indicating a possible contribution of NLRP3 inflammasome and pyroptosis activation to AD-related neurodegeneration. Taken together, our results suggest cell type-specific activation of pyroptosis in AD and extend the current knowledge about the contribution of neuroinflammation to the neurodegenerative process in AD via a direct link to neuron death by pyroptosis.


Assuntos
Doença de Alzheimer , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Doença de Alzheimer/patologia , Piroptose , Microglia/patologia , Peptídeos beta-Amiloides , Astrócitos/patologia , Doenças Neuroinflamatórias , Neurônios/patologia
3.
Ann Clin Transl Neurol ; 9(5): 734-746, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35502634

RESUMO

OBJECTIVE: Plasma phosphorylated-tau-181 (p-tau181) reliably detects clinical Alzheimer's disease (AD) as well as asymptomatic amyloid-ß (Aß) pathology, but is consistently quantified with assays using antibody AT270, which cross-reacts with p-tau175. This study investigates two novel phospho-specific assays for plasma p-tau181 and p-tau231 in clinical and asymptomatic AD. METHODS: Plasma p-tau species were quantified with Simoa in 44 AD patients, 40 spouse controls and an independent cohort of 151 cognitively unimpaired (CU) elderly who underwent Aß-PET. Simoa plasma Aß42 measurements were available in a CU subset (N = 69). Receiver operating characteristics and Aß-PET associations were used to evaluate biomarker validity. RESULTS: The novel plasma p-tau181 and p-tau231 assays did not show cross-reactivity. Plasma p-tau181 accurately detected clinical AD (area under the curve (AUC) = 0.98, 95% CI 0.95-1.00) as well as asymptomatic Aß pathology (AUC = 0.84, 95% CI 0.76-0.92), while plasma p-tau231 did not (AUC = 0.74, 95% CI 0.63-0.85 and 0.61, 95% CI 0.52-0.71, respectively). Plasma p-tau181, but not p-tau231, detected asymptomatic Aß pathology more accurately than age, sex and APOE combined (AUC = 0.64). In asymptomatic elderly, correlations between plasma p-tau181 and Aß pathology were observed throughout the cerebral cortex (ρ = 0.40, p < 0.0001), with focal associations within AD-vulnerable regions, particularly the precuneus. The plasma Aß42/p-tau181 ratio did not reflect asymptomatic Aß pathology better than p-tau181 alone. INTERPRETATION: The novel plasma p-tau181 assay is an accurate tool to detect clinical as well as asymptomatic AD and provides a phospho-specific alternative to currently employed immunoassays.


Assuntos
Doença de Alzheimer , Idoso , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides , Biomarcadores , Humanos , Proteínas tau
4.
Alzheimers Res Ther ; 13(1): 75, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827690

RESUMO

BACKGROUND: We examined in cognitively intact older adults the relative weight of cognitive, genetic, structural and amyloid brain imaging variables for predicting cognitive change over a 4-year time course. METHODS: One hundred-eighty community-recruited cognitively intact older adults (mean age 68 years, range 52-80 years, 81 women) belonging to the Flemish Prevent Alzheimer's Disease Cohort KU Leuven (F-PACK) longitudinal observational cohort underwent a baseline evaluation consisting of detailed cognitive assessment, structural MRI and 18F-flutemetamol PET. At inclusion, subjects were stratified based on Apolipoprotein E (APOE) ε4 and Brain-Derived Neurotrophic Factor (BDNF) val66met polymorphism according to a factorial design. At inclusion, 15% were amyloid-PET positive (Centiloid >23.4). All subjects underwent 2-yearly follow-up of cognitive performance for a 4-year time period. Baseline cognitive scores were analysed using factor analysis. The slope of cognitive change over time was modelled using latent growth curve analysis. Using correlation analysis, hierarchical regression and mediation analysis, we examined the effect of demographic (age, sex, education) and genetic variables, baseline cognition, MRI volumetric (both voxelwise and region-based) as well as amyloid imaging measures on the longitudinal slope of cognitive change. RESULTS: A base model of age and sex explained 18.5% of variance in episodic memory decline. This increased to 41.6% by adding baseline episodic memory scores. Adding amyloid load or volumetric measures explained only a negligible additional amount of variance (increase to 42.2%). A mediation analysis indicated that the effect of age on episodic memory scores was partly direct and partly mediated via hippocampal volume. Amyloid load did not play a significant role as mediator between age, hippocampal volume and episodic memory decline. CONCLUSION: In cognitively intact older adults, the strongest baseline predictor of subsequent episodic memory decline was the baseline episodic memory score. When this score was included, only very limited explanatory power was added by brain volume or amyloid load measures. The data warn against classifications that are purely biomarker-based and highlight the value of baseline cognitive performance levels in predictive models.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Idoso , Idoso de 80 Anos ou mais , Peptídeos beta-Amiloides , Cognição , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Feminino , Humanos , Estudos Longitudinais , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons
5.
Alzheimers Res Ther ; 12(1): 162, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33278904

RESUMO

BACKGROUND: Blood-based amyloid biomarkers may provide a non-invasive, cost-effective and scalable manner for detecting cerebral amyloidosis in early disease stages. METHODS: In this prospective cross-sectional study, we quantified plasma Aß1-42/Aß1-40 ratios with both routinely available ELISAs and novel SIMOA Amyblood assays, and provided a head-to-head comparison of their performances to detect cerebral amyloidosis in a nondemented elderly cohort (n = 199). Participants were stratified according to amyloid-PET status, and the performance of plasma Aß1-42/Aß1-40 to detect cerebral amyloidosis was assessed using receiver operating characteristic analysis. We additionally investigated the correlations of plasma Aß ratios with amyloid-PET and CSF Alzheimer's disease biomarkers, as well as platform agreement using Passing-Bablok regression and Bland-Altman analysis for both Aß isoforms. RESULTS: ELISA and SIMOA plasma Aß1-42/Aß1-40 detected cerebral amyloidosis with identical accuracy (ELISA: area under curve (AUC) 0.78, 95% CI 0.72-0.84; SIMOA: AUC 0.79, 95% CI 0.73-0.85), and both increased the performance of a basic demographic model including only age and APOE-ε4 genotype (p ≤ 0.02). ELISA and SIMOA had positive predictive values of respectively 41% and 36% in cognitively normal elderly and negative predictive values all exceeding 88%. Plasma Aß1-42/Aß1-40 correlated similarly with amyloid-PET for both platforms (Spearman ρ = - 0.32, p <  0.0001), yet correlations with CSF Aß1-42/t-tau were stronger for ELISA (ρ = 0.41, p = 0.002) than for SIMOA (ρ = 0.29, p = 0.03). Plasma Aß levels demonstrated poor agreement between ELISA and SIMOA with concentrations of both Aß1-42 and Aß1-40 measured by SIMOA consistently underestimating those measured by ELISA. CONCLUSIONS: ELISA and SIMOA demonstrated equivalent performances in detecting cerebral amyloidosis through plasma Aß1-42/Aß1-40, both with high negative predictive values, making them equally suitable non-invasive prescreening tools for clinical trials by reducing the number of necessary PET scans for clinical trial recruitment. TRIAL REGISTRATION: EudraCT 2009-014475-45 (registered on 23 Sept 2009) and EudraCT 2013-004671-12 (registered on 20 May 2014, https://www.clinicaltrialsregister.eu/ctr-search/trial/2013-004671-12/BE ).


Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Peptídeos beta-Amiloides , Amiloidose/diagnóstico por imagem , Biomarcadores , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Humanos , Fragmentos de Peptídeos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA