Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biomolecules ; 14(7)2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-39062523

RESUMO

Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.


Assuntos
Córtex Cerebral , Glicoproteínas , Microglia , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Masculino , Camundongos , Envelhecimento/genética , Envelhecimento/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Senescência Celular/genética , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Microglia/virologia , Microglia/patologia , Fenótipo , Febre do Nilo Ocidental/genética , Febre do Nilo Ocidental/virologia , Febre do Nilo Ocidental/patologia , Febre do Nilo Ocidental/metabolismo , Vírus do Nilo Ocidental/fisiologia , Glicoproteínas/genética , Glicoproteínas/metabolismo
2.
bioRxiv ; 2024 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-38826296

RESUMO

The capacity to regenerate myelin in the central nervous system (CNS) diminishes with age. This decline is particularly evident in multiple sclerosis (MS), which has been suggested to exhibit features of accelerated biological aging. Whether cellular senescence, a hallmark of aging, contributes to remyelination impairment remains unknown. Here, we show that senescent cells (SCs) accumulate within demyelinated lesions after injury, and their elimination enhances remyelination in young mice but not in aged mice. In young mice, we observed the upregulation of senescence-associated transcripts primarily in microglia after demyelination, followed by their reduction during remyelination. However, in aged mice, senescence-associated factors persisted within lesions, correlating with inefficient remyelination. We found that SC elimination enhanced remyelination in young mice but was ineffective in aged mice. Proteomic analysis of senescence-associated secretory phenotype (SASP) revealed elevated levels of CCL11/Eotaxin-1 in lesions, which was found to inhibit efficient oligodendrocyte maturation. These results suggest therapeutic targeting of SASP components, such as CCL11, may improve remyelination in aging and MS.

3.
Cell Rep Med ; 5(4): 101490, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574736

RESUMO

While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.


Assuntos
Esclerose Múltipla , Animais , Humanos , Esclerose Múltipla/patologia , Retina/patologia , Neurônios/patologia , Modelos Animais , Atrofia/patologia
4.
Curr Opin Neurobiol ; 86: 102877, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38631077

RESUMO

Microglia are tissue-resident macrophages and professional phagocytes of the central nervous system (CNS). In development, microglia-mediated phagocytosis is important for sculpting the cellular architecture. This includes the engulfment of dead/dying cells, pruning extranumerary synapses and axons, and phagocytosing fragments of myelin sheaths. Intriguingly, these developmental phagocytic mechanisms by which microglia sculpt the CNS are now appreciated as important for eliminating synapses, myelin, and proteins during neurodegeneration. Here, we discuss parallels between neurodevelopment and neurodegeneration, which highlights how development is informing disease. We further discuss recent advances and challenges towards therapeutically targeting these phagocytic pathways and how we can leverage development to overcome these challenges.


Assuntos
Microglia , Fagocitose , Humanos , Microglia/fisiologia , Microglia/patologia , Animais , Fagocitose/fisiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/fisiopatologia , Bainha de Mielina/fisiologia , Sistema Nervoso Central/patologia
5.
Nat Commun ; 15(1): 2497, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509062

RESUMO

Microglia play a pivotal role in neurodegenerative disease pathogenesis, but the mechanisms underlying microglia dysfunction and toxicity remain to be elucidated. To investigate the effect of neurodegenerative disease-linked genes on the intrinsic properties of microglia, we studied microglia-like cells derived from human induced pluripotent stem cells (iPSCs), termed iMGs, harboring mutations in profilin-1 (PFN1) that are causative for amyotrophic lateral sclerosis (ALS). ALS-PFN1 iMGs exhibited evidence of lipid dysmetabolism, autophagy dysregulation and deficient phagocytosis, a canonical microglia function. Mutant PFN1 also displayed enhanced binding affinity for PI3P, a critical signaling molecule involved in autophagic and endocytic processing. Our cumulative data implicate a gain-of-toxic function for mutant PFN1 within the autophagic and endo-lysosomal pathways, as administration of rapamycin rescued phagocytic dysfunction in ALS-PFN1 iMGs. These outcomes demonstrate the utility of iMGs for neurodegenerative disease research and implicate microglial vesicular degradation pathways in the pathogenesis of these disorders.


Assuntos
Esclerose Lateral Amiotrófica , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Esclerose Lateral Amiotrófica/metabolismo , Microglia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Profilinas/metabolismo , Mutação
6.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370645

RESUMO

Astrocytes and microglia are emerging key regulators of activity-dependent synapse remodeling that engulf and remove synapses in response to changes in neural activity. Yet, the degree to which these cells communicate to coordinate this process remains an open question. Here, we use whisker removal in postnatal mice to induce activity-dependent synapse removal in the barrel cortex. We show that astrocytes do not engulf synapses in this paradigm. Instead, astrocytes reduce their contact with synapses prior to microglia-mediated synapse engulfment. We further show that reduced astrocyte-contact with synapses is dependent on microglial CX3CL1-CX3CR1 signaling and release of Wnts from microglia following whisker removal. These results demonstrate an activity-dependent mechanism by which microglia instruct astrocyte-synapse interactions, which then provides a permissive environment for microglia to remove synapses. We further show that this mechanism is critical to remodel synapses in a changing sensory environment and this signaling is upregulated in several disease contexts.

7.
Ann N Y Acad Sci ; 1533(1): 38-50, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38294960

RESUMO

It has been more than a century since Pío del Río-Hortega first characterized microglia in histological stains of brain tissue. Since then, significant advances have been made in understanding the role of these resident central nervous system (CNS) macrophages. In particular, it is now known that microglia can sense neural activity and modulate neuronal circuits accordingly. We review the mechanisms by which microglia detect changes in neural activity to then modulate synapse numbers in the developing and mature CNS. This includes responses to both spontaneous and experience-driven neural activity. We further discuss activity-dependent mechanisms by which microglia regulate synaptic function and neural circuit excitability. Together, our discussion provides a comprehensive review of the activity-dependent functions of microglia within neural circuits in the healthy CNS, and highlights exciting new open questions related to understanding more fully microglia as key components and regulators of neural circuits.


Assuntos
Sistema Nervoso Central , Microglia , Humanos , Neurônios/fisiologia , Sinapses/fisiologia , Macrófagos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA