RESUMO
The emergence of new therapeutic modalities requires complementary tools for their efficient syntheses. Availability of methodologies for site-selective modification of biomolecules remains a long-standing challenge, given the inherent complexity and the presence of repeating residues that bear functional groups with similar reactivity profiles. We describe a bioconjugation strategy for modification of native peptides relying on high site selectivity conveyed by enzymes. We engineered penicillin G acylases to distinguish among free amino moieties of insulin (two at amino termini and an internal lysine) and manipulate cleavable phenylacetamide groups in a programmable manner to form protected insulin derivatives. This enables selective and specific chemical ligation to synthesize homogeneous bioconjugates, improving yield and purity compared to the existing methods, and generally opens avenues in the functionalization of native proteins to access biological probes or drugs.
Assuntos
Insulina , Penicilina Amidase , Peptídeos , Engenharia de Proteínas , Sequência de Aminoácidos , Humanos , Insulina/análogos & derivados , Insulina/biossíntese , Lisina/química , Penicilina Amidase/química , Penicilina Amidase/genética , Peptídeos/química , Peptídeos/genética , Engenharia de Proteínas/métodosRESUMO
Recent developments in fast chromatographic enantioseparations now make high throughput analysis of enantiopurity on the order of a few seconds achievable. Nevertheless, routine chromatographic determinations of enantiopurity to support stereochemical investigations in pharmaceutical research and development, synthetic chemistry and bioanalysis are still typically performed on the 5-20 min timescale, with many practitioners believing that sub-minute enantioseparations are not representative of the molecules encountered in day to day research. In this study we develop ultrafast chromatographic enantioseparations for a variety of pharmaceutically-related drugs and intermediates, showing that sub-minute resolutions are now possible in the vast majority of cases by both supercritical fluid chromatography (SFC) and reversed phase liquid chromatography (RP-LC). Examples are provided illustrating how such methods can be routinely developed and used for ultrafast high throughput analysis to support enantioselective synthesis investigations.
RESUMO
An extract of Eudistoma sp. provided eudistidine C (1), a heterocyclic alkaloid with a novel molecular framework. Eudistidine C (1) is a racemic natural product composed of a tetracyclic core structure further elaborated with a p-methoxyphenyl group and a phenol-substituted aminoimidazole moiety. This compound presented significant structure elucidation challenges due to the large number of heteroatoms and fully substituted carbons. These issues were mitigated by application of a new NMR pulse sequence (LR-HSQMBC) optimized to detect four- and five-bond heteronuclear correlations and the use of computer-assisted structure elucidation software. Synthesis of eudistidine C (1) was accomplished in high yield by treating eudistidine A (2) with 4(2-amino-1H-imidazol-5-yl)phenol (4) in DMSO. Synthesis of eudistidine C (1) confirmed the proposed structure and provided material for further biological characterization. Treatment of 2 with various nitrogen heterocycles and electron-rich arenes provided a series of analogues (5-10) of eudistidine C. Chiral-phase HPLC resolution of epimeric eudistidine C provided (+)-(R)-eudistidine C (1a) and (-)-(S)-eudistidine C (1b). The absolute configuration of these enantiomers was assigned by ECD analysis. (-)-(S)-Eudistidine C (1b) modestly inhibited interaction between the protein binding domains of HIF-1α and p300. Compounds 1, 2, and 6-10 exhibited significant antimalarial activity against Plasmodium falciparum.
Assuntos
Alcaloides/síntese química , Compostos Heterocíclicos de 4 ou mais Anéis/síntese química , Biologia Marinha , Urocordados/química , Alcaloides/química , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Compostos Heterocíclicos de 4 ou mais Anéis/química , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
The market of protein therapeutics is exploding, and characterization methods for proteins are being further developed to understand and explore conformational structures with regards to function and activity. There are several spectroscopic techniques that allow for analyzing protein secondary structure in solution. However, a majority of these techniques need to use purified protein, concentrated enough in the solution to produce a relevant spectrum. In this study, we describe a novel approach which uses ultrahigh pressure liquid chromatography (UHPLC) coupled with mass-spectrometry (MS) to explore compressibility of the secondary structure of proteins under increasing pressure detected by hydrogen-deuterium exchange (HDX). Several model proteins were used for these studies. The studies were conducted with UHPLC in isocratic mode at constant flow rate and temperature. The pressure was modified by a backpressure regulator up to about 1200 bar. It was found that the increase of retention factors upon pressure increase, at constant flow rate and temperature, was based on reduction of the proteins' molecular molar volume. The change in the proteins' molecular molar volume was caused by changes in protein folding, as was revealed by differential deuterium exchange. The degree of protein folding under certain UHPLC conditions can be controlled by pressure, at constant temperature and flow rate. By modifying pressure during UHPLC separation, it was possible to achieve changes in protein folding, which were manifested as changes in the number of labile protons exchanged to deuterons, or vice versa. Moreover, it was demonstrated with bovine insulin that a small difference in the number of protons exchanged to deuterons (based on protein folding under pressure) could be observed between batches obtained from different sources. The use of HDX during UHPLC separation allowed one to examine protein folding by pressure at constant flow rate and temperature in a mixture of sample solution with minimal amounts of sample used for analysis.
Assuntos
Cromatografia de Fase Reversa , Medição da Troca de Deutério , Pressão , Conformação Proteica , Animais , Bradicinina/química , Bovinos , Citocromos c/química , Citocromos c/metabolismo , Cavalos , Humanos , Insulina/química , Espectrometria de Massas , Mioglobina/química , Dobramento de Proteína , Temperatura , Uracila/químicaRESUMO
Commercially available ultra high pressure liquid chromatography (UHPLC) equipment offers the ability to explore the influence of backpressure on chromatographic separations. However, the influence of pressure on the chromatographic separation of enantiomers on chiral stationary phases remains largely unexplored. In this investigation we surveyed the effects of pressure on the separation of enantiomers using several reversed-phase chiral stationary phases. The experiments were conducted at constant flow rate and column temperature, using isocratic conditions. The only variable parameter was pressure, which was adjusted using a post-column backpressure regulator. For the separation of enantiomers on chiral stationary phases, an increase in pressure from approximately 2,000 psi (138 bar) to approximately 8,000 psi (552 bar) at constant flow rate and temperature led to an increase of retention factors for some analytes and a decrease for others. Achiral separations on a C-18 stationary phase always led only to an increase of retention factor. Interestingly, changes in pressure led to small changes in enantioselectivity during reversed-phase chiral separation of enantiomers, suggesting that such studies may be of value for better understanding the mechanisms underlying chromatographic enantioseparation.
Assuntos
Cromatografia de Fase Reversa , Pressão , Cromatografia Líquida de Alta Pressão , EstereoisomerismoRESUMO
In recent years, the use of halogen-containing molecules has proliferated in the pharmaceutical industry, where the incorporation of halogens, especially fluorine, has become vitally important for blocking metabolism and enhancing the biological activity of pharmaceuticals. The chromatographic separation of halogen-containing pharmaceuticals from associated isomers or dehalogenation impurities can sometimes be quite difficult. In an attempt to identify the best current tools available for addressing this important problem, a survey of the suitability of four chromatographic method development platforms (ultra high-performance liquid chromatography (UHPLC), core shell HPLC, achiral supercritical fluid chromatography (SFC) and chiral SFC) for separating closely related mixtures of halogen-containing pharmaceuticals and their dehalogenated isosteres is described. Of the 132 column and mobile phase combinations examined for each mixture, a small subset of conditions were found to afford the best overall performance, with a single UHPLC method (2.1 × 50 mm, 1.9 µm Hypersil Gold PFP, acetonitrile/methanol based aqueous eluents containing either phosphoric or perchloric acid with 150 mM sodium perchlorate) affording excellent separation for all samples. Similarly, a survey of several families of closely related halogen-containing small molecules representing the diversity of impurities that can sometimes be found in purchased starting materials for synthesis revealed chiral SFC (Chiralcel OJ-3 and Chiralpak IB, isopropanol or ethanol with 25 mM isobutylamine/carbon dioxide) as well as the UHPLC (2.1 × 50 mm, 1.8 µm ZORBAX RRHD Eclipse Plus C18 and the Gold PFP, acetonitrile/methanol based aqueous eluents containing phosphoric acid) as preferred methods.
Assuntos
Química Farmacêutica/métodos , Contaminação de Medicamentos , Halogenação , Halogênios/análise , Cromatografia Líquida de Alta Pressão/métodos , Halogênios/química , IsomerismoRESUMO
Bombesin receptor subtype 3 (BRS-3) is an orphan G-protein coupled receptor expressed primarily in the hypothalamus which plays a role in the onset of both diabetes and obesity. We report herein our progress made towards identifying a potent, selective bombesin receptor subtype-3 (BRS-3) agonist related to the previously described MK-7725(1) Chobanian et al. (2012) that would prevent atropisomerization through the increase of steric bulk at the C-2 position. This would thereby make clinical development of this class of compounds more cost effective by inhibiting racemization which can occur over long periods of time at room/elevated temperature.
Assuntos
Benzodiazepinas/química , Desenho de Fármacos , Receptores da Bombesina/agonistas , Sulfonamidas/química , Sulfonamidas/síntese química , Animais , Humanos , Camundongos , Ligação Proteica , Ratos , Receptores da Bombesina/metabolismo , Estereoisomerismo , Sulfonamidas/farmacocinética , TemperaturaRESUMO
We report herein the discovery of benzodiazepine sulfonamide-based bombesin receptor subtype 3 (BRS-3) agonists and their unusual chirality. Starting from a high-throughput screening lead, we prepared a series of BRS-3 agonists with improved potency and pharmacokinetic properties, of which compound 8a caused mechanism-based, dose-dependent food intake reduction and body weight loss after oral dosing in diet-induced obese mice. This effort also led to the discovery of a novel family of chiral molecules originated from the conformationally constrained seven-membered diazepine ring.