Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Expo Sci Environ Epidemiol ; 34(1): 3-22, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37739995

RESUMO

BACKGROUND: Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS: In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS: Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT: Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.


Assuntos
Arsênio , Água Potável , Criança , Humanos , Qualidade da Água , Reprodutibilidade dos Testes , Envelhecimento
3.
Environ Sci Technol ; 57(21): 7902-7912, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37184106

RESUMO

Drinking water contaminated by per- and polyfluoroalkyl substances (PFAS) is a widespread public health concern, and exposure-response relationships are known to vary across sociodemographic groups. However, research on disparities in drinking water PFAS exposures and the siting of PFAS sources in marginalized communities is limited. Here, we use monitoring data from 7873 U.S. community water systems (CWS) in 18 states to show that PFAS detection is positively associated with the number of PFAS sources and proportions of people of color who are served by these water systems. Each additional industrial facility, military fire training area, and airport in a CWS watershed was associated with a 10-108% increase in perfluorooctanoic acid and a 20-34% increase in perfluorooctane sulfonic acid in drinking water. Waste sector sources were also significantly associated with drinking water PFAS concentrations. CWS watersheds with PFAS sources served higher proportions of Hispanic/Latino and non-Hispanic Black residents compared to those without PFAS sources. CWS serving higher proportions of Hispanic/Latino and non-Hispanic Black residents had significantly increased odds of detecting several PFAS. This likely reflects disparities in the siting of PFAS contamination sources. Results of this work suggest that addressing environmental justice concerns should be a component of risk mitigation planning for areas affected by drinking water PFAS contamination.


Assuntos
Ácidos Alcanossulfônicos , Água Potável , Fluorocarbonos , Poluentes Químicos da Água , Humanos , Água Potável/análise , Fatores Sociodemográficos , Poluentes Químicos da Água/análise , Poluição da Água , Fluorocarbonos/análise
4.
Environ Sci Technol ; 56(10): 6294-6304, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35506608

RESUMO

PFAS are persistent and toxic chemicals used in many commercial and industrial applications that are often added to consumer products, including those used by children and adolescents, to impart water and stain resistance. Since product labels rarely list chemical additives, including PFAS, we evaluated whether other information on product labels can be used by consumers to select products without PFAS. We selected 93 items marketed to or often used by children and adolescents across three product types (furnishings, apparel, bedding) and five labeling groups representing different combinations of water and/or stain resistance and "green" (including "nontoxic") assurances. We screened all products for total fluorine (F) and analyzed solvent extracts from a subset (n = 61) for 36 targeted PFAS and from a smaller subset (n = 30) for perfluoroalkyl acids (PFAAs) generated by precursor oxidation using the total oxidizable precursor (TOP) assay. Products advertised as water- and/or stain-resistant had more frequent detections and higher concentrations of total F than those without such claims, and targeted PFAS were detected only in products labeled as water- and/or stain-resistant. Concentrations of PFAAs generated by precursor oxidation using the TOP assay often exceeded pre-oxidation concentrations, suggesting that PFAA precursors contribute to solvent-extractable PFAS from products. Among products advertised as water- and/or stain-resistant, detection frequencies and concentrations of targeted PFAS were similar regardless of green assurances. This study illustrates many nonessential uses of PFAS in products used by children and adolescents and suggests that while water- and stain-resistant assurances can identify products likely to contain PFAS, current green assurances do not consistently indicate the absence of PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Adolescente , Criança , Fluorocarbonos/análise , Humanos , Solventes , Água , Poluentes Químicos da Água/análise
5.
J Expo Sci Environ Epidemiol ; 30(3): 585-586, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32029887

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Environ Health Perspect ; 127(10): 107003, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31596611

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFASs) are common industrial and consumer product chemicals with widespread human exposures that have been linked to adverse health effects. PFASs are commonly detected in foods and food-contact materials (FCMs), including fast food packaging and microwave popcorn bags. OBJECTIVES: Our goal was to investigate associations between serum PFASs and consumption of restaurant food and popcorn in a representative sample of Americans. METHODS: We analyzed 2003-2014 serum PFAS and dietary recall data from the National Health and Nutrition Examination Survey (NHANES). We used multivariable linear regressions to investigate relationships between consumption of fast food, restaurant food, food eaten at home, and microwave popcorn and serum levels of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanesulfonic acid (PFOS). RESULTS: Calories of food eaten at home in the past 24 h had significant inverse associations with serum levels of all five PFASs; these associations were stronger in women. Consumption of meals from fast food/pizza restaurants and other restaurants was generally associated with higher serum PFAS concentrations, based on 24-h and 7-d recall, with limited statistical significance. Consumption of popcorn was associated with significantly higher serum levels of PFOA, PFNA, PFDA, and PFOS, based on 24-h and 12-month recall, up to a 63% (95% CI: 34, 99) increase in PFDA among those who ate popcorn daily over the last 12 months. CONCLUSIONS: Associations between serum PFAS and popcorn consumption may be a consequence of PFAS migration from microwave popcorn bags. Inverse associations between serum PFAS and food eaten at home-primarily from grocery stores-is consistent with less contact between home-prepared food and FCMs, some of which contain PFASs. The potential for FCMs to contribute to PFAS exposure, coupled with concerns about toxicity and persistence, support the use of alternatives to PFASs in FCMs. https://doi.org/10.1289/EHP4092.


Assuntos
Ácidos Alcanossulfônicos/análise , Exposição Dietética/estatística & dados numéricos , Poluentes Ambientais/análise , Fluorocarbonos/análise , Embalagem de Alimentos , Comportamento Alimentar , Humanos
7.
J Expo Sci Environ Epidemiol ; 29(6): 861, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30926894

RESUMO

This paper was originally published under a standard licence. This has now been amended to a CC BY licence in the PDF and HTML.

8.
J Expo Sci Environ Epidemiol ; 29(2): 206-217, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622332

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are used in a wide range of consumer products for their water- and grease-resistant properties, but few studies have explored this exposure route. We used multiple regression to investigate associations between six self-reported behaviors hypothesized to influence PFAS exposure and serum concentrations of six PFAS chemicals in 178 middle-aged women enrolled in the Child Health and Development Studies, about half of whom are African American. Blood samples were collected in 2010-2013, and participants were interviewed about behavior in 2015-2016. Results showed that African American women had lower levels of perfluorooctanoic acid (PFOA) and perfluorohexanesulfonic acid (PFHxS) compared with non-Hispanic white women. In African Americans, but not others, frequent consumption of prepared food in coated cardboard containers was associated with higher levels of four PFASs. Flossing with Oral-B Glide, having stain-resistant carpet or furniture, and living in a city served by a PFAS-contaminated water supply were also associated with higher levels of some PFASs. Product testing using particle-induced γ-ray emission (PIGE) spectroscopy confirmed that Oral-B Glide and competitor flosses contained detectable fluorine. Despite the delay between blood collection and interview, these results strengthen the evidence for exposure to PFASs from food packaging and implicate exposure from polytetrafluoroethylene (PTFE)-based dental floss for the first time.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Caprilatos/sangue , Poluentes Ambientais/sangue , Fluorocarbonos/sangue , Ácidos Sulfônicos/sangue , População Branca/estatística & dados numéricos , Adulto , Ácidos Alcanossulfônicos/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Autorrelato , Adulto Jovem
9.
J Expo Sci Environ Epidemiol ; 29(2): 157-171, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622333

RESUMO

Communities across the U.S. are discovering drinking water contaminated by perfluoroalkyl and polyfluoroalkyl substances (PFAS) and determining appropriate actions. There are currently no federal PFAS drinking water standards despite widespread drinking water contamination, ubiquitous population-level exposure, and toxicological and epidemiological evidence of adverse health effects. Absent federal PFAS standards, multiple U.S. states have developed their own health-based water guideline levels to guide decisions about contaminated site cleanup and drinking water surveillance and treatment. We examined perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) water guideline levels developed by the U.S. Environmental Protection Agency (EPA) and state agencies to protect people drinking the water, and summarized how and why these levels differ. We referenced documents and tables released in June 2018 by the Interstate Technology and Regulatory Council (ITRC) to identify states that have drinking water and groundwater guideline levels for PFOA and/or PFOS that differ from EPA's health advisories (HAs). We also gathered assessment documents from state websites and contacted state environmental and health agencies to identify and confirm current guidelines. Seven states have developed their own water guideline levels for PFOA and/or PFOS ranging from 13 to 1000 ng/L, compared to EPA's HA of 70 ng/L for both compounds individually or combined. We find that the development of PFAS guideline levels via exposure and hazard assessment decisions is influenced by multiple scientific, technical, and social factors, including managing scientific uncertainty, technical decisions and capacity, and social, political, and economic influences from involved stakeholders. Assessments by multiple states and academic scientists suggest that EPA's HA is not sufficiently protective. The ability of states to develop their own guideline levels and standards provides diverse risk assessment approaches as models for other state and federal regulators, while a sufficiently protective, scientifically sound, and enforceable federal standard would provide more consistent protection.


Assuntos
Ácidos Alcanossulfônicos/normas , Caprilatos/normas , Água Potável/normas , Fluorocarbonos/normas , Poluentes Químicos da Água/normas , Ácidos Alcanossulfônicos/efeitos adversos , Caprilatos/efeitos adversos , Água Potável/análise , Fluorocarbonos/efeitos adversos , Fluorocarbonos/análise , Água Subterrânea/normas , Humanos , Medição de Risco , Estados Unidos , United States Environmental Protection Agency/normas , Poluentes Químicos da Água/análise
10.
Environ Health ; 18(1): 3, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30651108

RESUMO

BACKGROUND: Low-income and minority communities often face disproportionately high pollutant exposures. The lead crisis in Flint, Michigan, has sparked concern about broader socioeconomic disparities in exposures to drinking water contaminants. Nitrate is commonly found in drinking water, especially in agricultural regions, and epidemiological evidence suggests elevated risk of cancer and birth defects at levels below U.S. EPA's drinking water standard (10 mg/L NO3-N). However, there have been no nationwide assessments of socioeconomic disparities in exposures to nitrate or other contaminants in U.S. drinking water. The goals of this study are to identify determinants of nitrate concentrations in U.S. community water systems (CWSs) and to evaluate disparities related to wealth or race/ethnicity. METHODS: We compiled nitrate data from 39,466 U.S. CWSs for 2010-2014. We used EPA's Safe Drinking Water Information System (SDWIS) to compile CWS characteristics and linked this information with both city- and county-level demographic data gathered from the U.S. Census Bureau. After applying multiple imputation methods to address censored nitrate concentration data, we conducted mixed-effects multivariable regression analyses at national and regional scales. RESULTS: 5.6 million Americans are served by a CWS that had an average nitrate concentration ≥ 5 mg/L NO3-N between 2010 and 2014. Extent of agricultural land use and reliance on groundwater sources were significantly associated with nitrate. The percent of Hispanic residents served by each system was significantly associated with nitrate even after accounting for county-level cropland and livestock production, and CWSs in the top quartile of percent Hispanic residents exceeded 5 mg/L nearly three times as often as CWSs serving the lowest quartile. By contrast, the percent of residents living in poverty and percent African American residents were both inversely associated with nitrate. CONCLUSIONS: Epidemiological evidence for health effects associated with drinking water above 5 mg/L NO3-N raises concerns about increased risk for the 5.6 million Americans served by public water supplies with average nitrate concentrations above this level. The associations we observed between nitrate concentrations and proportions of Hispanic residents support the need for improved efforts to assist vulnerable communities in addressing contamination and protecting source waters. Future studies can extend our methods to evaluate disparities in exposures to other contaminants and links to health effects.


Assuntos
Água Potável/análise , Nitratos/análise , Fatores Socioeconômicos , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Negro ou Afro-Americano , Água Potável/normas , Hispânico ou Latino , Humanos , Nitratos/normas , Justiça Social , Estados Unidos , Poluentes Químicos da Água/normas
11.
J Expo Sci Environ Epidemiol ; 29(2): 148-156, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30482935

RESUMO

In this perspective, we evaluate key and emerging epidemiological and toxicological data concerning immunotoxicity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) and seek to reconcile conflicting conclusions from two reviews published in 2016. We summarize ways that immunosuppression and immunoenhancement are defined and explain how specific outcomes are used to evaluate immunotoxicity in humans and experimental animals. We observe that different approaches to defining immunotoxicological outcomes, particularly those that do not produce clinical disease, may lead to different conclusions from epidemiological and toxicological studies. The fundamental point that we make is that aspects of epidemiological studies considered as limitations can be minimized when data from toxicological studies support epidemiological findings. Taken together, we find that results of epidemiological studies, supported by findings from toxicological studies, provide strong evidence that humans exposed to PFOA and PFOS are at risk for immunosuppression.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Caprilatos/toxicidade , Fluorocarbonos/toxicidade , Imunotoxinas/toxicidade , Animais , Exposição Ambiental/estatística & dados numéricos , Humanos , Medição de Risco
12.
Environ Sci Technol ; 51(13): 7304-7317, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28617596

RESUMO

Onsite wastewater treatment systems, such as septic systems, serve 20% of U.S. households and are common in areas not served by wastewater treatment plants (WWTPs) globally. They can be sources of nutrients and pathogen pollution and have been linked to health effects in communities where they contaminate drinking water. However, few studies have evaluated their ability to remove organic wastewater compounds (OWCs) such as pharmaceuticals, hormones, and detergents. We synthesized results from 20 studies of 45 OWCs in conventional drainfield-based and alternative onsite wastewater treatment systems to characterize concentrations and removal. For comparison, we synthesized 31 studies of these same OWCs in activated sludge WWTPs. OWC concentrations and removal in drainfields varied widely and depended on wastewater sources and compound-specific removal processes, primarily sorption and biotransformation. Compared to drainfields, alternative systems had similar median and higher maximum concentrations, reflecting a wider range of system designs and redox conditions. OWC concentrations and removal in drainfields were generally similar to those in conventional WWTPs. Persistent OWCs in groundwater and surface water can indicate the overall extent of septic system impact, while the presence of well-removed OWCs, such as caffeine and acetaminophen, may indicate discharges of poorly treated wastewater from failing or outdated septic systems.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Monitoramento Ambiental , Água Subterrânea , Compostos Orgânicos , Eliminação de Resíduos Líquidos
13.
Environ Sci Technol Lett ; 4(3): 105-111, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30148183

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are highly persistent synthetic chemicals, some of which have been associated with cancer, developmental toxicity, immunotoxicity, and other health effects. PFASs in grease-resistant food packaging can leach into food and increase dietary exposure. We collected ~400 samples of food contact papers, paperboard containers, and beverage containers from fast food restaurants throughout the United States and measured total fluorine using particle-induced γ-ray emission (PIGE) spectroscopy. PIGE can rapidly and inexpensively measure total fluorine in solid-phase samples. We found that 46% of food contact papers and 20% of paperboard samples contained detectable fluorine (>16 nmol/cm2). Liquid chromatography/high-resolution mass spectrometry analysis of a subset of 20 samples found perfluorocarboxylates, perfluorosulfonates, and other known PFASs and/or unidentified polyfluorinated compounds (based on nontargeted analysis). The total peak area for PFASs was higher in 70% of samples (10 of 14) with a total fluorine level of >200 nmol/cm2 compared to six samples with a total fluorine level of <16 nmol/cm2. Samples with high total fluorine levels but low levels of measured PFASs may contain volatile PFASs, PFAS polymers, newer replacement PFASs, or other fluorinated compounds. The prevalence of fluorinated chemicals in fast food packaging demonstrates their potentially significant contribution to dietary PFAS exposure and environmental contamination during production and disposal.

14.
Environ Sci Technol Lett ; 3(10): 344-350, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27752509

RESUMO

Drinking water contamination with poly- and perfluoroalkyl substances (PFASs) poses risks to the developmental, immune, metabolic, and endocrine health of consumers. We present a spatial analysis of 2013-2015 national drinking water PFAS concentrations from the U.S. Environmental Protection Agency's (US EPA) third Unregulated Contaminant Monitoring Rule (UCMR3) program. The number of industrial sites that manufacture or use these compounds, the number of military fire training areas, and the number of wastewater treatment plants are all significant predictors of PFAS detection frequencies and concentrations in public water supplies. Among samples with detectable PFAS levels, each additional military site within a watershed's eight-digit hydrologic unit is associated with a 20% increase in PFHxS, a 10% increase in both PFHpA and PFOA, and a 35% increase in PFOS. The number of civilian airports with personnel trained in the use of aqueous film-forming foams is significantly associated with the detection of PFASs above the minimal reporting level. We find drinking water supplies for 6 million U.S. residents exceed US EPA's lifetime health advisory (70 ng/L) for PFOS and PFOA. Lower analytical reporting limits and additional sampling of smaller utilities serving <10000 individuals and private wells would greatly assist in further identifying PFAS contamination sources.

15.
Sci Total Environ ; 547: 470-481, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26822473

RESUMO

Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.


Assuntos
Monitoramento Ambiental , Água Subterrânea/química , Compostos Orgânicos/análise , Poços de Água , Água Potável/química , Massachusetts , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Águas Residuárias/estatística & dados numéricos
16.
Environ Sci Process Impacts ; 18(2): 222-36, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26729635

RESUMO

Elevated fish mercury (Hg) concentrations in freshwater ecosystems worldwide are a significant human and ecological health concern. Mercury bioaccumulation and biomagnification in lakes and reservoirs are controlled by numerous biogeochemical and ecological factors, contributing to variability in fish Hg concentrations both within and among systems. We measured total mercury concentrations ([THg]) and stable isotopes (δ(15)N, δ(13)C) in over 30 fish species in two connected subtropical freshwater reservoirs (Grand Lake and Lake Hudson, Oklahoma, USA), their tributaries, and local farm ponds, all of which are potentially impacted by nearby atmospheric Hg sources. We also conducted an inter-system analysis among 61 reservoirs in Oklahoma to explore biological, chemical and physical factors associated with fish [THg] across systems. We found that [THg] for most species in Grand Lake and Lake Hudson were relatively low compared to other reservoirs in Oklahoma. There were significant spatial variations in many species within and between Grand Lake and Lake Hudson, even after accounting for length and/or trophic position (based on δ(15)N). Fish in local farm ponds, commonly used in agricultural regions for raising game fish, had 2-17 times higher [THg] than fish of a similar length in nearby reservoirs. The inter-system analysis revealed that pH, water color, rainfall, and nutrients are the best predictors of fish [THg] across systems. Our results provide insight into the key factors associated with fish [THg] variations both within and across systems, and may be useful for exposure assessment and for identifying sites and water bodies prone to high fish [THg] as monitoring priorities.


Assuntos
Monitoramento Ambiental , Peixes/metabolismo , Água Doce/análise , Lagos/química , Mercúrio/análise , Mercúrio/metabolismo , Poluentes Químicos da Água/análise , Animais , Ecossistema , Cadeia Alimentar , Humanos , Oklahoma
17.
J Expo Sci Environ Epidemiol ; 26(5): 510-9, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26648247

RESUMO

Infant exposures to metals are a concern for mining-impacted communities, although limited information is available to assess residential exposures over the first year of life. We measured lead (Pb), manganese, arsenic, and cadmium in indoor air, house dust, yard soil, and tap water from 53 infants' homes near the Tar Creek Superfund Site (Oklahoma, USA) at two time points representing developmental stages before and during initial ambulation (age 0-6 and 6-12 months). We measured infant metal biomarkers in: umbilical cord blood (n=53); 12- (n=43) and 24- (n=22) month blood; and hair at age 12 months (n=39). We evaluated cross-sectional and longitudinal associations between infant residential and biomarker concentrations. A doubling of mean dust Pb concentration was consistently associated with 36-49% higher 12-month blood Pb adjusting for cord blood Pb (P⩽0.05). Adjusted dust concentration explained 29-35% of blood Pb variance, and consistent associations with other media were not observed. Although concentrations in dust and blood were generally low, strong and consistent associations between dust and body burden suggest that house dust in mining-impacted communities may impact children's health. These relationships were observed at a young age, typically before blood Pb levels peak and when children's development may be particularly vulnerable to toxic insult.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Exposição Ambiental/análise , Poluição Ambiental/análise , Metais Pesados/análise , Biomarcadores/análise , Estudos de Coortes , Água Potável/química , Poeira/análise , Monitoramento Ambiental/métodos , Feminino , Sangue Fetal/química , Cabelo/química , Habitação , Humanos , Lactente , Masculino , Mineração , Oklahoma , Análise de Regressão , Poluentes do Solo/análise
18.
Environ Toxicol Chem ; 34(11): 2427-36, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26496131

RESUMO

The use and interpretation of fish consumption surveys and interviews, the application of fish consumption rates for sediment evaluation and cleanup, and the development of human health water quality criteria (HH WQC) are complex and interrelated issues. The present article focuses on these issues using examples from the United States, although the issues may be relevant for other countries. Some key considerations include the fact that there are many types of fish consumption surveys (e.g., 24-h recall surveys, food frequency questionnaires, creel surveys), and these surveys have different advantages and limitations. Identification of target populations for protection, identification of the species and quantities of fish consumed, and determination of bioaccumulation assumptions are important factors when developing water quality and sediment screening levels and standards. Accounting for the cultural importance of fish consumption for some populations is an even more complex element. Discussions about HH WQC often focus only on the fish consumption rate and may not have broad public input. Some states are trying to change this through extensive public participation efforts and use of probabilistic approaches to derive HH WQC. Finally, there are limits to what WQC can achieve. Solutions beyond the establishment of WQC that target toxics reduction from other sources may provide the greatest improvements to water quality and reductions in human health risks in the future.


Assuntos
Alimentos Marinhos , Qualidade da Água , Animais , Biomarcadores/análise , Peixes , Cabelo/química , Humanos , Mercúrio/análise , Gestão de Riscos , Estações do Ano , Inquéritos e Questionários
19.
Environ Res ; 136: 155-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25460632

RESUMO

Methylmercury (MeHg) exposure through fish consumption is a worldwide health concern. Saltwater fish account for most dietary MeHg exposure in the general U.S. population, but less is known about seasonal variations in MeHg exposure and fish consumption among millions of freshwater anglers. This longitudinal study examined associations between MeHg exposure and fish consumption in a rural, low-income population relying on a freshwater reservoir (Oklahoma, USA) for recreational and subsistence fishing. We interviewed 151 participants, primarily anglers and their families, seasonally for one year using 90-day recall food frequency questionnaires to assess general and species-specific fish consumption, and tested hair biomarker samples for total mercury (THg hair). Mean THg hair was 0.27 µg/g (n=595, range: 0.0044-3.1 µg/g), with 4% of participants above U.S. EPA's guideline for women of childbearing age and children. Mean fish consumption was 58 g/d (95% CI: 49-67 g/d), within the range previously reported for recreational freshwater anglers and above the national average. Unlike the general U.S. population, freshwater species contributed the majority of fish consumption (69%) and dietary Hg exposure (60%) among participants, despite relatively low THg in local fish. THg hair increased with fish consumption, age, and education, and was higher among male participants and the lowest in winter. Our results suggest that future studies of anglers should consider seasonality in fish consumption and MeHg exposure and include household members who share their catch. Efforts to evaluate benefits of reducing Hg emissions should consider dietary patterns among consumers of fish from local freshwater bodies.


Assuntos
Exposição Ambiental , Peixes , Alimentos , Mercúrio/toxicidade , Animais , Cabelo/química , Humanos , Estudos Longitudinais , Mercúrio/análise , Estações do Ano , Estados Unidos
20.
Sci Total Environ ; 490: 456-66, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24867708

RESUMO

Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal; mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 µg g(-1)), Pb (up to 550 µg g(-1)) and Cd (up to 200 µg g(-1)) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage.


Assuntos
Monitoramento Ambiental , Compostos Férricos/química , Metais Pesados/análise , Mineração , Poluentes do Solo/análise , Metais Pesados/química , Oklahoma , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA