Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(24): 16929-16930, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38845572
2.
Phys Chem Chem Phys ; 24(48): 29480-29494, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36448609

RESUMO

Microscopic-level understanding of the interaction of hydrocarbons with transition metal surfaces is an important prerequisite for rational design of new materials with improved catalytic properties. In this report, we present a mechanistic study on the keto-enol tautomerisation of butanal on Pd(111), which was theoretically predicted to play a crucial role in low-barrier hydrogenation of carbonyl compounds. These processes were addressed by a combination of reflection-absorption infrared spectroscopy, molecular beam techniques and theoretical calculations at the density functional theory level. Spectroscopic information obtained on Pd(111) suggests that butanal forms three different aldehyde species, which we indicate as A1-A3 as well as their enol counterpart E1. The electronically strongest perturbed and strongest binding species A1 is most likely related to the η2(C,O) adsorption configuration, in which both C and O atoms are involved in the bonding with the underlying metal. The species A2 weakly binds and is less electronically perturbed and can be associated with the η1(O) adsorption configuration. The third type of aldehyde species A3, which is nearly unperturbed and is found only at low temperatures, results from the formation of the butanal multilayer. Importantly, the enol form of butanal was observed on the surface, which gives rise to a new characteristic band at 1104 cm-1 related to the stretching vibration of the C-O single bond (ν(C-O)). With increasing temperature, the multi-layer related species A3 disappears from the surface above 136 K. The population of aldehyde species A1 and the enol species E1 noticeably increases with increasing temperature, while the band related to the aldehyde species A2 becomes strongly attenuated and finally completely disappears above 120 K. These observations suggest that species E1 and A1 are formed in an activated process and - in view of the strongly anti-correlated population of the species E1 and A2 - it can be concluded that enol species E1 is most likely formed from the weakly bound aldehyde species A2 (η1(O)). Finally, we discuss the possible routes to enol stabilization via intermolecular bonding and provide the possible structure of the enol-containing stabilized complex, which is compatible with all spectroscopic observations. The obtained results provide important insights into the process of keto-enol tautomerisation of simple carbonyl compounds.

3.
Chemistry ; 27(68): 17240-17254, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34608688

RESUMO

We present a mechanistic study on the formation of an active ligand layer over Pd(111), turning the catalytic surface highly active and selective in partial hydrogenation of an α,ß-unsaturated aldehyde acrolein. Specifically, we investigate the chemical composition of a ligand layer consisting of allyl cyanide deposited on Pd(111) and its dynamic changes under the hydrogenation conditions. On pristine surface, allyl cyanide largely retains its chemical structure and forms a layer of molecular species with the CN bond oriented nearly parallel to the underlying metal. In the presence of hydrogen, the chemical composition of allyl cyanide strongly changes. At 100 K, allyl cyanide transforms to unsaturated imine species, containing the C=C and C=N double bonds. At increasing temperatures, these species undergo two competing reaction pathways. First, the C=C bond become hydrogenated and the stable N-butylimine species are produced. In the competing pathway, the unsaturated imine reacts with hydrogen to fully hydrogenate the imine group and produce butylamine. The latter species are unstable under the hydrogenation reaction conditions and desorb from the surface, while the N-butylimine adsorbates formed in the first reaction pathway remain adsorbed and act as an active ligand layer in selective hydrogenation of acrolein.

4.
Angew Chem Int Ed Engl ; 60(30): 16349-16354, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34008906

RESUMO

We present a mechanistic study on the formation and dynamic changes of a ligand-based heterogeneous Pd catalyst for chemoselective hydrogenation of α,ß-unsaturated aldehyde acrolein. Deposition of allyl cyanide as a precursor of a ligand layer renders Pd highly active and close to 100 % selective toward propenol formation by promoting acrolein adsorption in a desired configuration via the C=O end. Employing a combination of real-space microscopic and in-operando spectroscopic surface-sensitive techniques, we show that an ordered active ligand layer is formed under operational conditions, consisting of stable N-butylimine species. In a competing process, unstable amine species evolve on the surface, which desorb in the course of the reaction. Obtained atomistic-level insights into the formation and dynamic evolution of the active ligand layer under operational conditions provide important input required for controlling chemoselectivity by purposeful surface functionalization.

5.
Phys Chem Chem Phys ; 22(27): 15696-15706, 2020 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-32618972

RESUMO

A mechanistic study on interaction of a chiral modifier - (R)-(+)-1-(1-naphthylethylamine) (R-NEA) - with a single crystalline Pt(111) surface is reported. The details of the adsorption geometry of individual R-NEA molecules and their intermolecular interactions are addressed by combination of infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). The spectroscopic observations suggest that the molecules are tilted with respect to the underlying metal substrate with the long axis of the naphthyl ring being parallel and the short axis tilted with respect to the surface. In the medium coverage range, formation of directed 3-5 membered chains was observed by STM for the first time, which points to intermolecular bonding between individual molecules and might account for an unusual tilted adsorption geometry deduced from the IR spectra. Based on the STM images revealing the atomic structure of the Pt grid close to the R-NEA chains, we propose the adsorption configuration of NEA fitting both the IRAS and STM data. The obtained results suggest that this strong intermolecular interaction energetically stabilizes the tilted adsorption geometry of the naphthyl ring, which otherwise would be expected to lie flat on the metal to maximize the dispersive interactions. At the coverage close to saturation, R-NEA builds a self-assembled overlayer with hexagonal symmetry, exhibiting intermolecular distances larger than in the directed chains.

6.
Rev Sci Instrum ; 90(5): 053903, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31153295

RESUMO

A new custom-designed ultrahigh vacuum (UHV) apparatus combining molecular beam techniques and in situ surface spectroscopy for reactivity measurements on complex nanostructured model surfaces is described. It has been specifically designed to study the mechanisms, kinetics, and dynamics of heterogeneously catalyzed reactions over well-defined model catalysts consisting of metal nanoparticles supported on thin oxide films epitaxially grown on metal single crystals. The reactivity studies can be performed in a broad pressure range starting from UHV up to the ambient pressure conditions. The UHV system includes (i) a preparation chamber providing the experimental techniques required for the preparation and structural characterization of single-crystal based model catalysts such as oxide supported metal particles or ordered oxide surfaces and (ii) the reaction chamber containing three molecular beams-two effusive and one supersonic, which are crossed at the same point on the sample surface, infrared reflection-absorption spectroscopy for the detection of surface-adsorbed species, and quadrupole mass spectrometry for gas phase analysis. The supersonic beam is generated in a pulsed supersonic expansion and can be modulated via a variable duty-cycle chopper. The effusive beams are produced by newly developed compact differentially pumped sources based on multichannel glass capillary arrays. Both effusive sources can be modulated by a vacuum-motor driven chopper and are capable of providing high flux and high purity beams. The apparatus contains an ambient pressure cell, which is connected to the preparation chamber via an in situ sample transfer system and provides an experimental possibility to study the reactivity of well-defined nanostructured model catalysts in a broad range of pressure conditions-up to ambient pressure-with the gas phase analysis based on gas chromatography. Additionally, a dedicated deposition chamber is connected to the preparation chamber, which is employed for the in situ functionalization of model surfaces with large organic molecules serving as promoters or modifiers of chemical reactions. We present a general overview of the apparatus as well as a description of the individual components and their interplay. The results of the test measurements involving the most important components are presented and discussed.

7.
Angew Chem Int Ed Engl ; 57(51): 16659-16664, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30311717

RESUMO

Tautomerisation of simple carbonyl compounds to their enol counterparts on metal surfaces is envisaged to enable an easier route for hydrogenation of the C=O bond in heterogeneously catalyzed reactions. To understand the mechanisms of enol formation and stabilization over catalytically active metal surfaces, we performed a mechanistic study on keto-enol tautomerization of a monocarbonyl compound acetophenon over Pt(111) surface. By employing infrared reflection adsorption spectroscopy in combination with scanning tunneling microscopy, we found that enol can be formed by building a ketone-enol dimer, in which one molecule in the enol form is stabilized through hydrogen bonding to the carbonyl group of the second ketone molecule. Based on the investigations of the co-adsorption behavior of acetophenone and hydrogen, we conclude that keto-enol tautomerization occurs in the intramolecular process and does not involve hydrogen transfer through the surface hypothesized previously.

8.
J Phys Chem Lett ; 9(18): 5555-5566, 2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30204444

RESUMO

In this Perspective, we report on the recent progress in atomistic-level understanding of selective partial hydrogenation of α,ß-unsaturated carbonyl compounds, particularly acrolein, toward unsaturated alcohols over model single crystalline and nanostructured Pd catalysts. This reaction was observed to proceed with nearly 100% selectivity over Pd(111) but not over supported Pd nanoparticles. The origin of the high selectivity was related to formation of a dense overlayer of oxopropyl surface species occurring at the early reaction stages via partial hydrogenation of the C=C bond in acrolein with only one H atom. This oxopropyl overlayer strongly modifies the adsorption and reactive properties of Pd(111), turning it 100% selective toward C=O bond hydrogenation. The underlying reaction mechanism represents a particular case of ligand-directed heterogeneous catalysis, in which the surface adsorbates do not directly participate in the catalytic process as the reaction intermediates but strongly affect the elementary reaction steps via specific adsorbate-adsorbate interactions.

9.
Sci Adv ; 3(7): e1700939, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28782033

RESUMO

The mechanistic understanding and control over transformations of multi-unsaturated hydrocarbons on transition metal surfaces remains one of the major challenges of hydrogenation catalysis. To reveal the microscopic origins of hydrogenation chemoselectivity, we performed a comprehensive theoretical investigation on the reactivity of two α,ß-unsaturated carbonyls-isophorone and acrolein-on seven (111) metal surfaces: Pd, Pt, Rh, Ir, Cu, Ag, and Au. In doing so, we uncover a general mechanism that goes beyond the celebrated frontier molecular orbital theory, rationalizing the C═C bond activation in isophorone and acrolein as a result of significant surface-induced broadening of high-energy inner molecular orbitals. By extending our calculations to hydrogen-precovered surface and higher adsorbate surface coverage, we further confirm the validity of the "inner orbital broadening mechanism" under realistic catalytic conditions. The proposed mechanism is fully supported by our experimental reaction studies for isophorone and acrolein over Pd nanoparticles terminated with (111) facets. Although the position of the frontier molecular orbitals in these molecules, which are commonly considered to be responsible for chemical interactions, suggests preferential hydrogenation of the C═O double bond, experiments show that hydrogenation occurs at the C═C bond on Pd catalysts. The extent of broadening of inner molecular orbitals might be used as a guiding principle to predict the chemoselectivity for a wide class of catalytic reactions at metal surfaces.

10.
Phys Chem Chem Phys ; 19(6): 4231-4242, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28116388

RESUMO

Room temperature adsorption of carbon dioxide (CO2) on monocrystalline CaO(001) thin films grown on a Mo(001) substrate was studied by infrared reflection-absorption spectroscopy (IRAS) and quantum chemical calculations. For comparison, CO2 adsorption was examined on poorly ordered, nanoparticulate CaO films prepared on Ru(0001). For both systems, CO2 readily adsorbs on the clean CaO surface. However, additional bands were observable on the CaO/Ru(0001) films compared with CaO/Mo(001), because the stricter IRAS surface selection rules do not apply to adsorption on the disordered thin films grown on Ru(0001). Spectral evolution with increasing exposure of the IRA bands suggested the presence of several adsorption sites which are consecutively populated by CO2. Density functional calculations showed that CO2 adsorption occurs as monodentate surface carbonate (CO32-) species at monatomic step sites and other low-coordinated sites, followed by formation of carbonates on terraces, which dominate at increasing CO2 exposure. To explain the coverage-dependent IRAS results, we propose CO2 surface islanding from the onset, most likely in the form of pairs and other chain-like species, which were calculated as thermodynamically favorable. The calculated adsorption energy for isolated CO2 on the terrace sites (184 ± 10 kJ mol-1) is larger than the adsorption energy obtained by temperature programmed desorption (∼120-140 kJ mol-1) and heat of adsorption taken from microcalorimetry measurements at low coverage (∼125 kJ mol-1). However, the calculated adsorption energies become less favorable when carbonate chains intersect on CaO terraces, forming kinks. Furthermore, our assignments of the initial stages of CO2 adsorption are consistent with the observed coverage effect on the CO2 adsorption energy measured by microcalorimetry and the IRAS results.

11.
Chemistry ; 22(44): 15856-15863, 2016 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-27621113

RESUMO

The selectivity in the hydrogenation of acrolein over Fe3 O4 -supported Pd nanoparticles has been investigated as a function of nanoparticle size in the 220-270 K temperature range. While Pd(111) shows nearly 100 % selectivity towards the desired hydrogenation of the C=O bond to produce propenol, Pd nanoparticles were found to be much less selective towards this product. In situ detection of surface species by using IR-reflection absorption spectroscopy shows that the selectivity towards propenol critically depends on the formation of an oxopropyl spectator species. While an overlayer of oxopropyl species is effectively formed on Pd(111) turning the surface highly selective for propenol formation, this process is strongly hindered on Pd nanoparticles by acrolein decomposition resulting in CO formation. We show that the extent of acrolein decomposition can be tuned by varying the particle size and the reaction temperature. As a result, significant production of propenol is observed over 12 nm Pd nanoparticles at 250 K, while smaller (4 and 7 nm) nanoparticles did not produce propenol at any of the temperatures investigated. The possible origin of particle-size dependence of propenol formation is discussed. This work demonstrates that the selectivity in the hydrogenation of acrolein is controlled by the relative rates of acrolein partial hydrogenation to oxopropyl surface species and of acrolein decomposition, which has significant implications for rational catalyst design.

12.
Phys Chem Chem Phys ; 18(20): 13960-73, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27149902

RESUMO

Atomistic-level understanding of the interaction of α,ß-unsaturated aldehydes and their derivatives with late transition metals is of fundamental importance for the rational design of new catalytic materials with the desired selectivity towards C[double bond, length as m-dash]C vs. C[double bond, length as m-dash]O bond partial hydrogenation. In this study, we investigate the interaction of acrolein, and its partial hydrogenation products propanal and allyl alcohol, with Pd(111) as a prototypical system. A combination of infrared reflection-absorption spectroscopy (IRAS) and temperature programmed desorption (TPD) experiments was applied under well-defined ultrahigh vacuum (UHV) conditions to obtain detailed information on the adsorption geometries of acrolein, propanal, and allyl alcohol as a function of coverage. We compare the IR spectra obtained for multilayer coverages, reflecting the molecular structure of unperturbed molecules, with the spectra acquired for sub-monolayer coverages, at which the chemical bonds of the molecules are strongly distorted. Coverage-dependent IR spectra of acrolein on Pd(111) point to the strong changes in the adsorption geometry with increasing acrolein coverage. Acrolein adsorbs with the C[double bond, length as m-dash]C and C[double bond, length as m-dash]O bonds lying parallel to the surface in the low coverage regime and changes its geometry to a more upright orientation with increasing coverage. TPD studies indicate decomposition of the species adsorbed in the sub-monolayer regime upon heating. Similar strong coverage dependence of the IR spectra were found for propanal and allyl alcohol. For all investigated molecules a detailed assignment of vibrational bands is reported.

13.
J Am Chem Soc ; 137(42): 13496-502, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26481220

RESUMO

We present a mechanistic study on selective hydrogenation of acrolein over model Pd surfaces--both single crystal Pd(111) and Pd nanoparticles supported on a model oxide support. We show for the first time that selective hydrogenation of the C═O bond in acrolein to form an unsaturated alcohol is possible over Pd(111) with nearly 100% selectivity. However, this process requires a very distinct modification of the Pd(111) surface with an overlayer of oxopropyl spectator species that are formed from acrolein during the initial stages of reaction and turn the metal surface selective toward propenol formation. By applying pulsed multimolecular beam experiments and in situ infrared reflection-absorption spectroscopy, we identified the chemical nature of the spectator and the reactive surface intermediate (propenoxy species) and experimentally followed the simultaneous evolution of the reactive intermediate on the surface and formation of the product in the gas phase.

14.
Angew Chem Int Ed Engl ; 54(47): 13942-6, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26457889

RESUMO

We present a mechanistic study on the interaction of water with a well-defined model Fe3O4(111) surface that was investigated by a combination of direct calorimetric measurements of adsorption energies, infrared vibrational spectroscopy, and calculations bases on density functional theory (DFT). We show that the adsorption energy of water (101 kJ mol(-1)) is considerably higher than all previously reported values obtained by indirect desorption-based methods. By employing (18)O-labeled water molecules and an Fe3 O4 substrate, we proved that the generally accepted simple model of water dissociation to form two individual OH groups per water molecule is not correct. DFT calculations suggest formation of a dimer, which consists of one water molecule dissociated into two OH groups and another non-dissociated water molecule creating a thermodynamically very stable dimer-like complex.

15.
Acc Chem Res ; 48(10): 2775-82, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26366783

RESUMO

Heterogeneous catalysts are widely employed in technological applications, such as chemical manufacturing, energy harvesting, conversion and storage, and environmental technology. Often they consist of disperse metal nanoparticles anchored onto a morphologically complex oxide support. The compositional and structural complexity of such nanosized systems offers many degrees of freedom for tuning their catalytic performance. However, a rational design of heterogeneous catalysts based on an atomistic-level understanding of underlying surface processes has not been fully achieved so far and remains one of the primary goals for catalysis research. In our group, we developed concepts for replacing highly complex real supported catalysts by simplified model systems, which complexity can be gradually increased in order to mimic certain structural aspects of practically relevant catalysts in a controlled way. Well-defined model systems consisting of metal-nanoparticle ensembles supported on planar oxide substrates have proven to provide a successful approach to achieve fundamental insights into heterogeneous catalysis. In this Account, two mechanistic case studies focusing on an atomistic-level understanding of surface chemistry are presented in which we investigate how the nanoscopic nature of metal clusters affects their interaction with the adsorbates and the reactive processes. Particularly, we investigate the effects of the particle size and the flexibility of the atoms constituting metal clusters on the binding energy of gas-phase adsorbates, such as CO and oxygen. We identified two major structural factors determining the binding energy of gas phase adsorbates on metal nanoparticles: the local configuration of the adsorption site and the particle size. While the effect of the local configuration of the adsorption site was found to be adsorbate specific, the reduction of the cluster size results in a pronounced decrease of binding energy for both adsorbates and appears to be a general trend. In the second case study, we address the role of the surface modifiers, such as carbon, on the process of hydrogen diffusion into volume of Pd nanoparticles that was previously identified is an important step in hydrogenation chemistry. We provide for the first time direct experimental evidence that, inline with the recent theoretical predictions, the atomically flexible low-coordinated surface sites on Pd particles play a crucial role in the diffusion process and that their selective modification with carbon results in marked facilitation of subsurface hydrogen diffusion. By virtue of these examples, we demonstrate how model studies on complex nanostructured materials may provide an atomistic view of processes at the gas-solid interface related to heterogeneous catalysis.

16.
Phys Chem Chem Phys ; 17(35): 22726-35, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26256836

RESUMO

Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes.


Assuntos
Butiratos/química , Etilaminas/química , Naftalenos/química , Platina/química , Adsorção , Calorimetria , Conformação Molecular , Estereoisomerismo , Propriedades de Superfície
17.
Angew Chem Int Ed Engl ; 53(49): 13371-5, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25294745

RESUMO

Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.


Assuntos
Hidrogênio/química , Nanopartículas Metálicas/química , Elementos de Transição/química , Adsorção , Catálise , Hidrogenação , Metais/química , Modelos Moleculares , Propriedades de Superfície
18.
Chem Rec ; 14(5): 759-74, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25155869

RESUMO

Single-crystal adsorption calorimetry (SCAC) measures the energetics of gas-surface interactions in a direct way and can be applied to a broad range of well-defined model surfaces. In this Personal Account we review some of the recent advances in understanding the interaction of gaseous molecules with single-crystal surfaces and well-defined supported metallic nanoparticles by this powerful technique. SCAC was applied on single-crystal surfaces to determine formation enthalpies of adsorbed molecular fragments typically formed during heterogeneously catalyzed reactions involving hydrocarbons. On supported metal nanoparticles, the binding energies of gaseous species were determined by SCAC as a function of the particle size. The reported data provide valuable information for ongoing research in many fields of heterogeneous catalysis and materials science. In addition, direct calorimetric measurements serve as benchmarks for the improvement of computational approaches to understanding surface chemistry.

19.
J Phys Chem C Nanomater Interfaces ; 118(48): 27833-27842, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26089998

RESUMO

Atomistic level understanding of interaction of α,ß-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,ß-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection-absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111).

20.
Faraday Discuss ; 162: 341-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24015593

RESUMO

The energetics of elementary surface processes relevant for CO oxidation, particularly CO and 02 adsorption, were investigated by a direct calorimetric method on model Pd nanoparticles and on the extended Pd(111) single crystal surface. The focus of this study lies on a detailed understanding of how a nanometer scale confinement of matter affects the binding strength of gaseous adsorbates. We report adsorption energies and sticking coefficients of CO and 02 measured as a function of the adsorbate surface coverage both on pristine and O-covered Pd surfaces. The reduced dimensions of the Pd substrate were found to affect the binding strength of the adsorbates in two principle ways: (i) via the change of the local adsorption environment that can result e.g. in stronger adsorbate bonding at the particle's low coordinated surface sites and (ii) via the contraction of the Pd lattice in small clusters and a concomitant weakening of chemisorptive interaction. Particularly for 02 adsorption, the change of the adsorption site from a three-fold hollow on Pd(111) to the edge site on Pd nanoparticles (approximately 4 nm sized on average) was found to result in a strong increase of the Pd-O bond strength. In contrast, CO adsorbs weaker on Pd nanoparticles as compared to the extended Pd(111) surface. In total, the binding energies of adsorbates on Pd and with this their surface coverages turn out to depend in a non-monotonic way on the particular structure of Pd surfaces, including the local structure of the adsorption site as well as the global properties of the small clusters arising e.g. from the lattice contraction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA