Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(9): 101152, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37572667

RESUMO

Male sex represents one of the major risk factors for severe COVID-19 outcome. However, underlying mechanisms that mediate sex-dependent disease outcome are as yet unknown. Here, we identify the CYP19A1 gene encoding for the testosterone-to-estradiol metabolizing enzyme CYP19A1 (also known as aromatase) as a host factor that contributes to worsened disease outcome in SARS-CoV-2-infected males. We analyzed exome sequencing data obtained from a human COVID-19 cohort (n = 2,866) using a machine-learning approach and identify a CYP19A1-activity-increasing mutation to be associated with the development of severe disease in men but not women. We further analyzed human autopsy-derived lungs (n = 86) and detect increased pulmonary CYP19A1 expression at the time point of death in men compared with women. In the golden hamster model, we show that SARS-CoV-2 infection causes increased CYP19A1 expression in the lung that is associated with dysregulated plasma sex hormone levels and reduced long-term pulmonary function in males but not females. Treatment of SARS-CoV-2-infected hamsters with a clinically approved CYP19A1 inhibitor (letrozole) improves impaired lung function and supports recovery of imbalanced sex hormones specifically in males. Our study identifies CYP19A1 as a contributor to sex-specific SARS-CoV-2 disease outcome in males. Furthermore, inhibition of CYP19A1 by the clinically approved drug letrozole may furnish a new therapeutic strategy for individualized patient management and treatment.


Assuntos
Aromatase , COVID-19 , Feminino , Humanos , Masculino , Aromatase/genética , Letrozol , SARS-CoV-2 , COVID-19/genética , Estradiol , Testosterona
2.
Nat Commun ; 14(1): 3267, 2023 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277327

RESUMO

COVID-19 survivors often suffer from post-acute sequelae of SARS-CoV-2 infection (PASC). Current evidence suggests dysregulated alveolar regeneration as a possible explanation for respiratory PASC, which deserves further investigation in a suitable animal model. This study investigates morphological, phenotypical and transcriptomic features of alveolar regeneration in SARS-CoV-2 infected Syrian golden hamsters. We demonstrate that CK8+ alveolar differentiation intermediate (ADI) cells occur following SARS-CoV-2-induced diffuse alveolar damage. A subset of ADI cells shows nuclear accumulation of TP53 at 6- and 14-days post infection (dpi), indicating a prolonged arrest in the ADI state. Transcriptome data show high module scores for pathways involved in cell senescence, epithelial-mesenchymal transition, and angiogenesis in cell clusters with high ADI gene expression. Moreover, we show that multipotent CK14+ airway basal cell progenitors migrate out of terminal bronchioles, aiding alveolar regeneration. At 14 dpi, ADI cells, peribronchiolar proliferates, M2-macrophages, and sub-pleural fibrosis are observed, indicating incomplete alveolar restoration. The results demonstrate that the hamster model reliably phenocopies indicators of a dysregulated alveolar regeneration of COVID-19 patients. The results provide important information on a translational COVID-19 model, which is crucial for its application in future research addressing pathomechanisms of PASC and in testing of prophylactic and therapeutic approaches for this syndrome.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Cricetinae , Humanos , Síndrome de COVID-19 Pós-Aguda , Diferenciação Celular , Células Epiteliais Alveolares , Progressão da Doença , Mesocricetus
3.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563514

RESUMO

Similar to many other respiratory viruses, SARS-CoV-2 targets the ciliated cells of the respiratory epithelium and compromises mucociliary clearance, thereby facilitating spread to the lungs and paving the way for secondary infections. A detailed understanding of mechanism involved in ciliary loss and subsequent regeneration is crucial to assess the possible long-term consequences of COVID-19. The aim of this study was to characterize the sequence of histological and ultrastructural changes observed in the ciliated epithelium during and after SARS-CoV-2 infection in the golden Syrian hamster model. We show that acute infection induces a severe, transient loss of cilia, which is, at least in part, caused by cilia internalization. Internalized cilia colocalize with membrane invaginations, facilitating virus entry into the cell. Infection also results in a progressive decline in cells expressing the regulator of ciliogenesis FOXJ1, which persists beyond virus clearance and the termination of inflammatory changes. Ciliary loss triggers the mobilization of p73+ and CK14+ basal cells, which ceases after regeneration of the cilia. Although ciliation is restored after two weeks despite the lack of FOXJ1, an increased frequency of cilia with ultrastructural alterations indicative of secondary ciliary dyskinesia is observed. In summary, the work provides new insights into SARS-CoV-2 pathogenesis and expands our understanding of virally induced damage to defense mechanisms in the conducting airways.


Assuntos
COVID-19 , Animais , Cílios/metabolismo , Cricetinae , Epitélio , Homeostase , Mesocricetus , Mucosa Respiratória/metabolismo , SARS-CoV-2
4.
EBioMedicine ; 79: 103999, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35439679

RESUMO

BACKGROUND: Neurological symptoms such as cognitive decline and depression contribute substantially to post-COVID-19 syndrome, defined as lasting symptoms several weeks after initial SARS-CoV-2 infection. The pathogenesis is still elusive, which hampers appropriate treatment. Neuroinflammatory responses and neurodegenerative processes may occur in absence of overt neuroinvasion. METHODS: Here we determined whether intranasal SARS-CoV-2 infection in male and female syrian golden hamsters results in persistent brain pathology. Brains 3 (symptomatic) or 14 days (viral clearance) post infection versus mock (n = 10 each) were immunohistochemically analyzed for viral protein, neuroinflammatory response and accumulation of tau, hyperphosphorylated tau and alpha-synuclein protein. FINDINGS: Viral protein in the nasal cavity led to pronounced microglia activation in the olfactory bulb beyond viral clearance. Cortical but not hippocampal neurons accumulated hyperphosphorylated tau and alpha-synuclein, in the absence of overt inflammation and neurodegeneration. Importantly, not all brain regions were affected, which is in line with selective vulnerability. INTERPRETATION: Thus, despite the absence of virus in brain, neurons develop signatures of proteinopathies that may contribute to progressive neuronal dysfunction. Further in depth analysis of this important mechanism is required. FUNDING: Federal Ministry of Health (BMG; ZMV I 1-2520COR501), Federal Ministry of Education and Research (BMBF 01KI1723G), Ministry of Science and Culture of Lower Saxony in Germany (14 - 76103-184 CORONA-15/20), German Research Foundation (DFG; 398066876/GRK 2485/1), Luxemburgish National Research Fund (FNR, Project Reference: 15686728, EU SC1-PHE-CORONAVIRUS-2020 MANCO, no > 101003651).


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Encéfalo , COVID-19/complicações , Cricetinae , Feminino , Humanos , Inflamação , Masculino , Neurônios , Proteínas Virais , alfa-Sinucleína , Síndrome de COVID-19 Pós-Aguda
5.
J Innate Immun ; 14(5): 461-476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35086104

RESUMO

Neutrophil extracellular traps (NETs) have been described as a potential trigger of severe COVID-19. NETs are known as extracellular DNA fibers released by neutrophils in response to infection. If the host is unable to balance efficient clearance of NETs by dornases (DNases), detrimental consequences occur. Elevated levels of NETs in COVID-19 patients are associated with higher risk of morbid thrombotic complications. Here, we studied the level of NET markers and DNase activity in a cohort of COVID-19 patients compared to healthy controls. Our data confirmed an increased level of NET markers in the plasma of COVID-19 patients, with a higher level in male compared to female patients. At the same time, there was an increased DNase activity detectable in COVID-19 patients compared to healthy controls. Importantly, there was a negative correlation of DNase activity with the age of male patients. The antimicrobial peptide LL-37, which is known to stabilize NETs against DNase degradation, is embedded in NETs upon severe acute respiratory syndrome coronavirus-2-infection. The LL-37 plasma level correlates with the NET-marker level in male COVID-19 patients, indicating a potential role of LL-37 in the risk of NET-associated thrombosis in male COVID-19 patients by stabilizing NETs against DNase degradation. In conclusion, our data identify two potential risk factors of elderly male patients which may lead to inefficient NET degradation and a subsequently higher risk of NET-associated thrombosis during COVID-19: reduced DNase activity and an increased LL-37 level.


Assuntos
COVID-19 , Armadilhas Extracelulares , Trombose , Idoso , Desoxirribonuclease I/metabolismo , Armadilhas Extracelulares/metabolismo , Feminino , Humanos , Masculino , Neutrófilos/metabolismo
7.
Emerg Microbes Infect ; 10(1): 1807-1818, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34402750

RESUMO

Male sex was repeatedly identified as a risk factor for death and intensive care admission. However, it is yet unclear whether sex hormones are associated with disease severity in COVID-19 patients. In this study, we analysed sex hormone levels (estradiol and testosterone) of male and female COVID-19 patients (n = 50) admitted to an intensive care unit (ICU) in comparison to control non-COVID-19 patients at the ICU (n = 42), non-COVID-19 patients with the most prevalent comorbidity (coronary heart diseases) present within the COVID-19 cohort (n = 39) and healthy individuals (n = 50). We detected significantly elevated estradiol levels in critically ill male COVID-19 patients compared to all control cohorts. Testosterone levels were significantly reduced in critically ill male COVID-19 patients compared to control cohorts. No statistically significant differences in sex hormone levels were detected in critically ill female COVID-19 patients, albeit similar trends towards elevated estradiol levels were observed. Linear regression analysis revealed that among a broad range of cytokines and chemokines analysed, IFN-γ levels are positively associated with estradiol levels in male and female COVID-19 patients. Furthermore, male COVID-19 patients with elevated estradiol levels were more likely to receive ECMO treatment. Thus, we herein identified that disturbance of sex hormone metabolism might present a hallmark in critically ill male COVID-19 patients.


Assuntos
COVID-19/mortalidade , COVID-19/patologia , Estradiol/sangue , Testosterona/sangue , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Cuidados Críticos , Estado Terminal , Oxigenação por Membrana Extracorpórea , Feminino , Humanos , Hipogonadismo/patologia , Unidades de Terapia Intensiva , Interferon gama/sangue , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Fatores de Risco , SARS-CoV-2 , Índice de Gravidade de Doença , Distribuição por Sexo
8.
Viruses ; 13(4)2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918079

RESUMO

Vascular changes represent a characteristic feature of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leading to a breakdown of the vascular barrier and subsequent edema formation. The aim of this study was to provide a detailed characterization of the vascular alterations during SARS-CoV-2 infection and to evaluate the impaired vascular integrity. Groups of ten golden Syrian hamsters were infected intranasally with SARS-CoV-2 or phosphate-buffered saline (mock infection). Necropsies were performed at 1, 3, 6, and 14 days post-infection (dpi). Lung samples were investigated using hematoxylin and eosin, alcian blue, immunohistochemistry targeting aquaporin 1, CD3, CD204, CD31, laminin, myeloperoxidase, SARS-CoV-2 nucleoprotein, and transmission electron microscopy. SARS-CoV-2 infected animals showed endothelial hypertrophy, endothelialitis, and vasculitis. Inflammation mainly consisted of macrophages and lower numbers of T-lymphocytes and neutrophils/heterophils infiltrating the vascular walls as well as the perivascular region at 3 and 6 dpi. Affected vessels showed edema formation in association with loss of aquaporin 1 on endothelial cells. In addition, an ultrastructural investigation revealed disruption of the endothelium. Summarized, the presented findings indicate that loss of aquaporin 1 entails the loss of intercellular junctions resulting in paracellular leakage of edema as a key pathogenic mechanism in SARS-CoV-2 triggered pulmonary lesions.


Assuntos
Aquaporina 1/metabolismo , COVID-19/patologia , Células Endoteliais/metabolismo , Células Endoteliais/ultraestrutura , Inflamação/patologia , Animais , Vasos Sanguíneos/ultraestrutura , Modelos Animais de Doenças , Imuno-Histoquímica , Pulmão/irrigação sanguínea , Pulmão/ultraestrutura , Pulmão/virologia , Mesocricetus , SARS-CoV-2 , Vasculite/patologia , Vasculite/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA