Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Behav Brain Res ; 400: 113010, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33181183

RESUMO

Deep space flight missions beyond the Van Allen belt have the potential to expose astronauts to space radiation which may damage the central nervous system and impair function. The proposed mission to Mars will be the longest mission-to-date and identifying mission critical tasks that are sensitive to space radiation is important for developing and evaluating the efficacy of counter measures. Fine motor control has been assessed in humans, rats, and many other species using string-pulling behavior. For example, focal cortical damage has been previously shown to disrupt the topographic (i.e., path circuity) and kinematic (i.e., moment-to-moment speed) organization of rat string-pulling behavior count to compromise task accuracy. In the current study, rats were exposed to a ground-based model of simulated space radiation (5 cGy 28Silicon), and string-pulling behavior was used to assess fine motor control. Irradiated rats initially took longer to pull an unweighted string into a cage, exhibited impaired accuracy in grasping the string, and displayed postural deficits. Once rats were switched to a weighted string, some deficits lessened but postural instability remained. These results demonstrate that a single exposure to a low dose of space radiation disrupts skilled hand movements and posture, suggestive of neural impairment. This work establishes a foundation for future studies to investigate the neural structures and circuits involved in fine motor control and to examine the effectiveness of counter measures to attenuate the effects of space radiation on fine motor control.


Assuntos
Comportamento Animal/fisiologia , Radiação Cósmica/efeitos adversos , Meio Ambiente Extraterreno , Destreza Motora/fisiologia , Equilíbrio Postural/fisiologia , Lesões Experimentais por Radiação/fisiopatologia , Animais , Fenômenos Biomecânicos , Humanos , Masculino , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA