Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(20): eadj5942, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758779

RESUMO

Acetyl-CoA synthetase short-chain family member 1 (ACSS1) uses acetate to generate mitochondrial acetyl-CoA and is regulated by deacetylation by sirtuin 3. We generated an ACSS1-acetylation (Ac) mimic mouse, where lysine-635 was mutated to glutamine (K635Q). Male Acss1K635Q/K635Q mice were smaller with higher metabolic rate and blood acetate and decreased liver/serum ATP and lactate levels. After a 48-hour fast, Acss1K635Q/K635Q mice presented hypothermia and liver aberrations, including enlargement, discoloration, lipid droplet accumulation, and microsteatosis, consistent with nonalcoholic fatty liver disease (NAFLD). RNA sequencing analysis suggested dysregulation of fatty acid metabolism, cellular senescence, and hepatic steatosis networks, consistent with NAFLD. Fasted Acss1K635Q/K635Q mouse livers showed increased fatty acid synthase (FASN) and stearoyl-CoA desaturase 1 (SCD1), both associated with NAFLD, and increased carbohydrate response element-binding protein binding to Fasn and Scd1 enhancer regions. Last, liver lipidomics showed elevated ceramide, lysophosphatidylethanolamine, and lysophosphatidylcholine, all associated with NAFLD. Thus, we propose that ACSS1-K635-Ac dysregulation leads to aberrant lipid metabolism, cellular senescence, and NAFLD.


Assuntos
Senescência Celular , Mitocôndrias , Hepatopatia Gordurosa não Alcoólica , Estearoil-CoA Dessaturase , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Camundongos , Senescência Celular/genética , Acetilação , Mitocôndrias/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Masculino , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Técnicas de Introdução de Genes , Fígado/metabolismo , Fígado/patologia , Metabolismo dos Lipídeos , Sirtuína 3/metabolismo , Sirtuína 3/genética , Modelos Animais de Doenças , Coenzima A Ligases , Ácido Graxo Sintase Tipo I
2.
Sci Adv ; 10(20): eado1463, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758782

RESUMO

A ketogenic diet (KD) is a high-fat, low-carbohydrate diet that leads to the generation of ketones. While KDs improve certain health conditions and are popular for weight loss, detrimental effects have also been reported. Here, we show mice on two different KDs and, at different ages, induce cellular senescence in multiple organs, including the heart and kidney. This effect is mediated through adenosine monophosphate-activated protein kinase (AMPK) and inactivation of mouse double minute 2 (MDM2) by caspase-2, leading to p53 accumulation and p21 induction. This was established using p53 and caspase-2 knockout mice and inhibitors to AMPK, p21, and caspase-2. In addition, senescence-associated secretory phenotype biomarkers were elevated in serum from mice on a KD and in plasma samples from patients on a KD clinical trial. Cellular senescence was eliminated by a senolytic and prevented by an intermittent KD. These results have important clinical implications, suggesting that the effects of a KD are contextual and likely require individual optimization.


Assuntos
Senescência Celular , Dieta Cetogênica , Camundongos Knockout , Proteína Supressora de Tumor p53 , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Camundongos , Humanos , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Masculino , Especificidade de Órgãos
3.
Chemphyschem ; 24(11): e202300053, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37016506

RESUMO

We have been interested in the development of rubisco-based biomimetic systems for reversible CO2 capture from air. Our design of the chemical CO2 capture and release (CCR) system is informed by the understanding of the binding of the activator CO2 (A CO2 ) in rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase). The active site consists of the tetrapeptide sequence Lys-Asp-Asp-Glu (or KDDE) and the Lys sidechain amine is responsible for the CO2 capture reaction. We are studying the structural chemistry and the thermodynamics of CO2 capture based on the tetrapeptide CH3 CO-KDDE-NH2 ("KDDE") in aqueous solution to develop rubisco mimetic CCR systems. Here, we report the results of 1 H NMR and 13 C NMR analyses of CO2 capture by butylamine and by KDDE. The carbamylation of butylamine was studied to develop the NMR method and with the protocol established, we were able to quantify the oligopeptide carbamylation at much lower concentration. We performed a pH profile in the multi equilibrium system and measured amine species and carbamic acid/carbamate species by the integration of 1 H NMR signals as a function of pH in the range 8≤pH≤11. The determination of ΔG1 (R) for the reaction R-NH2 +CO2 ← → ${ \mathbin{{\stackrel{\textstyle\rightarrow} { {\smash{\leftarrow}\vphantom{_{\vbox to.5ex{\vss}}}} } }} }$ R-NH-COOH requires the solution of a multi-equilibrium equation system, which accounts for the dissociation constants K2 and K3 controlling carbonate and bicarbonate concentrations, the acid dissociation constant K4 of the conjugated acid of the amine, and the acid dissociation constant K5 of the alkylcarbamic acid. We show how the multi-equilibrium equation system can be solved with the measurements of the daughter/parent ratio X, the knowledge of the pH values, and the initial concentrations [HCO3 - ]0 and [R-NH2 ]0 . For the reaction energies of the carbamylations of butylamine and KDDE, our best values are ΔG1 (Bu)=-1.57 kcal/mol and ΔG1 (KDDE)=-1.17 kcal/mol. Both CO2 capture reactions are modestly exergonic and thereby ensure reversibility in an energy-efficient manner. These results validate the hypothesis that KDDE-type oligopeptides may serve as reversible CCR systems in aqueous solution and guide designs for their improvement.

4.
Antioxidants (Basel) ; 11(4)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35453320

RESUMO

The loss and/or dysregulation of several cellular and mitochondrial antioxidants' expression or enzymatic activity, which leads to the aberrant physiological function of these proteins, has been shown to result in oxidative damage to cellular macromolecules. In this regard, it has been surmised that the disruption of mitochondrial networks responsible for maintaining normal metabolism is an established hallmark of cancer and a novel mechanism of therapy resistance. This altered metabolism leads to aberrant accumulation of reactive oxygen species (ROS), which, under specific physiological conditions, leads to a potential tumor-permissive cellular environment. In this regard, it is becoming increasingly clear that the loss or disruption of mitochondrial oxidant scavenging enzymes may be, in specific tumors, either an early event in transformation or exhibit tumor-promoting properties. One example of such an antioxidant enzyme is manganese superoxide dismutase (MnSOD, also referred to as SOD2), which detoxifies superoxide, a ROS that has been shown, when its normal physiological levels are disrupted, to lead to oncogenicity and therapy resistance. Here, we will also discuss how the acetylation of MnSOD leads to a change in detoxification function that leads to a cellular environment permissive for the development of lineage plasticity-like properties that may be one mechanism leading to tumorigenic and therapy-resistant phenotypes.

5.
J Phys Chem A ; 125(44): 9578-9593, 2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34714081

RESUMO

Rubisco is the enzyme responsible for CO2 fixation in nature, and it is activated by CO2 addition to the amine group of its lysine 201 side chain. We are designing rubisco-based biomimetic systems for reversible CO2 capture from ambient air. The oligopeptide biomimetic capture systems are employed in aqueous solution. To provide a solid foundation for the experimental solution-phase studies of the CO2 capture reaction, we report here the results of computational studies of the thermodynamics of CO2 capture by small alkylamines in aqueous solution. We studied CO2 addition to methyl-, ethyl-, propyl-, and butylamine with the consideration of the full conformational space for the amine and the corresponding carbamic acids and with the application of an accurate solvation model for the potential energy surface analyses. The reaction energies of the carbamylation reactions were determined based on just the most stable structures (MSS) and based on the ensemble energies computed with the Boltzmann distribution (BD), and it is found that ΔGBD ≈ ΔGMSS. The effect of the proper accounting for the molecular translational entropies in solution with the Wertz approach are much more significant, and the free energy of the capture reactions ΔWGBD is more negative by 2.9 kcal/mol. Further accounting for volume effects in solution results in our best estimates for the reaction energies of the carbamylation reactions of ΔWABD = -5.4 kcal/mol. The overall difference is ΔGBD - ΔWABD = 2.4 kcal/mol for butylamine carbamylation. The full conformational space analyses inform about the conformational isomerizations of carbamic acids, and we determined the relevant rotational profiles and their transition-state structures. Our detailed studies emphasize that, more generally, solution-phase reaction energies should be evaluated with the Helmholtz free energy and can be affected substantially by solution effects on translational entropies.

6.
Talanta ; 220: 121303, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32928377

RESUMO

Colorimetry, the quantitative determination of color, usually of a digital image, has useful applications in diverse areas of research. Many methods have been proposed for translating the RGB data of an image to obtain concentration information. Among the many methods for RGB analysis, we focus on the vector projection method (VP), which is based on a vector analysis in 3D RGB color space. This method has the major advantages of being conceptually intelligible and generalizable to various systems. For solutions with variable concentrations of one chromophore, we will show that the analysis of the trace in RGB color space allows for a judgment about the reliability of the linear concentration dependence of the chromapostasi parameter. We discuss the theoretical underpinnings of the method in two test cases, a simple dye solution and a titration of an organic acid with phenolphthalein indicator. The VP method was then applied to the Ce-catalyzed Belousov-Zhabotinsky reaction with the expectation that the colorimetry would quantify [Ce4+] oscillations. Surprisingly, the 3D color space analysis revealed hysteresis loops and the origin and implications of this observation are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA