Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Cancer Sci ; 111(10): 3854-3861, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32713038

RESUMO

Given that oropharyngeal squamous cell carcinoma (OPSCC) have now surpassed cervical cancer as the most common human papillomavirus (HPV)-driven cancer, there is an interest in developing non-invasive predictive biomarkers to early detect HPV-driven OPSCC. In total, 665 cancer-free individuals were recruited from Queensland, Australia. Oral HPV16 DNA positivity in those individuals was determined by our in-house developed sensitive PCR method. Individuals with (n = 9) or without (n = 12) oral HPV16 infections at baseline were followed for a median duration of 24 mo. Individuals with persistent oral HPV16 infection (≥ 30 mo) were invited for clinical examination of their oral cavity and oropharynx by an otolaryngologist. Oral HPV16 DNA was detected in 12 out of 650 cancer-free individuals (1.8%; 95% confidence interval [CI]: 1.0-3.2). Of the 3 individuals with persistent oral HPV16 infection, the first individual showed no clinical evidence of pathology. The second individual was diagnosed with a 2 mm invasive squamous cell carcinoma (T1N0M0) positive for both p16INK4a expression and HPV16 DNA. The third individual was found to have a mildly dysplastic lesion in the tonsillar region that was negative for p16INK4a expression and HPV16 DNA and she continues to have HPV16 DNA in her saliva. Taken together, our data support the value of using an oral HPV16 DNA assay as a potential screening tool for the detection of microscopic HPV-driven OPSCC. Larger multicenter studies across various geographic regions recruiting populations at a higher risk of developing HPV-driven OPSCC are warranted to extend and confirm the results of the current investigation.


Assuntos
DNA Viral/isolamento & purificação , Detecção Precoce de Câncer , Papillomavirus Humano 16/patogenicidade , Carcinoma de Células Escamosas de Cabeça e Pescoço/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Saliva/virologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Adulto Jovem
2.
Biomolecules ; 10(2)2020 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-32028653

RESUMO

The role of human papillomavirus type 16 (HPV16) in oral potentially malignant disorders (OPMD) and oral cavity carcinoma (OC) is still under debate. We investigated HPV16 prevalence in unstimulated saliva, oral rinse samples, oral swabs and tumour biopsies collected from OPMD (n = 83) and OC (n = 106) patients. HPV16 genotype, viral load, physical status (episomal vs. integrated) and tumour p16INK4a expression were determined. Oral HPV16 prevalence was higher in OC than in OPMD, but this difference was not statistically significant (7.5% (8/106) versus 3.6% (3/83), odds ratio (OR): 2.18, 95% confidence interval (CI): 0.56, 8.48, p = 0.26). There was a significant association (p < 0.05) between oral HPV16 infection and heavy tobacco consumption. Real-time PCR results indicated that no integration events occurred in either OPMD or OC cases based on the HPV16 E2/E6 ratio. HPV16 positive OPMD and OC patients had similar HPV16 E2 and E6 viral loads. The inter-rater agreement between tumour p16INK4a expression and oral HPV16 infection was considered as fair (k = 0.361) for OC. Our data suggest that the involvement of HPV16 in oral carcinogenesis is limited.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina/genética , Papillomavirus Humano 16/genética , Neoplasias Bucais/epidemiologia , Neoplasias Bucais/virologia , Infecções por Papillomavirus/epidemiologia , Idoso , Austrália/epidemiologia , Biópsia , DNA Viral , Feminino , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Razão de Chances , Prevalência , Reação em Cadeia da Polimerase em Tempo Real , Saliva/virologia , Fumar , Carga Viral
3.
J Clin Invest ; 126(4): 1512-24, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26974157

RESUMO

Vanishing white matter (VWM) is a fatal leukodystrophy that is caused by mutations in genes encoding subunits of eukaryotic translation initiation factor 2B (eIF2B). Disease onset and severity are codetermined by genotype. White matter astrocytes and oligodendrocytes are almost exclusively affected; however, the mechanisms of VWM development remain unclear. Here, we used VWM mouse models, patients' tissue, and cell cultures to investigate whether astrocytes or oligodendrocytes are the primary affected cell type. We generated 2 mouse models with mutations (Eif2b5Arg191His/Arg191His and Eif2b4Arg484Trp/Arg484Trp) that cause severe VWM in humans and then crossed these strains to develop mice with various mutation combinations. Phenotypic severity was highly variable and dependent on genotype, reproducing the clinical spectrum of human VWM. In all mutant strains, impaired maturation of white matter astrocytes preceded onset and paralleled disease severity and progression. Bergmann glia and retinal Müller cells, nonforebrain astrocytes that have not been associated with VWM, were also affected, and involvement of these cells was confirmed in VWM patients. In coculture, VWM astrocytes secreted factors that inhibited oligodendrocyte maturation, whereas WT astrocytes allowed normal maturation of VWM oligodendrocytes. These studies demonstrate that astrocytes are central in VWM pathomechanisms and constitute potential therapeutic targets. Importantly, astrocytes should also be considered in the pathophysiology of other white matter disorders.


Assuntos
Astrócitos/metabolismo , Leucoencefalopatias/metabolismo , Substância Branca/metabolismo , Animais , Astrócitos/patologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Fator de Iniciação 2B em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/metabolismo , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Leucoencefalopatias/fisiopatologia , Camundongos , Camundongos Mutantes , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Substância Branca/patologia , Substância Branca/fisiopatologia
4.
Ann Neurol ; 77(1): 114-31, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25382142

RESUMO

OBJECTIVE: Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic disease characterized by infantile onset white matter edema and delayed onset neurological deterioration. Loss of MLC1 function causes MLC. MLC1 is involved in ion-water homeostasis, but its exact role is unknown. We generated Mlc1-null mice for further studies. METHODS: We investigated which brain cell types express MLC1, compared developmental expression in mice and men, and studied the consequences of loss of MLC1 in Mlc1-null mice. RESULTS: Like humans, mice expressed MLC1 only in astrocytes, especially those facing fluid-brain barriers. In mice, MLC1 expression increased until 3 weeks and then stabilized. In humans, MLC1 expression was highest in the first year, decreased, and stabilized from approximately 5 years. Mlc1-null mice had early onset megalencephaly and increased brain water content. From 3 weeks, abnormal astrocytes were present with swollen processes abutting fluid-brain barriers. From 3 months, widespread white matter vacuolization with intramyelinic edema developed. Mlc1-null astrocytes showed slowed regulatory volume decrease and reduced volume-regulated anion currents, which increased upon MLC1 re-expression. Mlc1-null astrocytes showed reduced expression of adhesion molecule GlialCAM and chloride channel ClC-2, but no substantial changes in other known MLC1-interacting proteins. INTERPRETATION: Mlc1-null mice replicate early stages of the human disease with early onset intramyelinic edema. The cellular functional defects, described for human MLC, were confirmed. The earliest change was astrocytic swelling, substantiating that in MLC the primary defect is in volume regulation by astrocytes. MLC1 expression affects expression of GlialCAM and ClC-2. Abnormal interplay between these proteins is part of the pathomechanisms of MLC.


Assuntos
Cistos/genética , Cistos/patologia , Cistos/fisiopatologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Adolescente , Adulto , Fatores Etários , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Astrócitos/patologia , Edema Encefálico/etiologia , Cerebelo/patologia , Córtex Cerebral/citologia , Córtex Cerebral/patologia , Criança , Pré-Escolar , Cistos/metabolismo , Modelos Animais de Doenças , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Lactente , Recém-Nascido , Potenciais da Membrana/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/genética , Equilíbrio Postural/genética , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Transtornos de Sensação/genética , Substância Branca/metabolismo , Substância Branca/patologia , Substância Branca/ultraestrutura , Adulto Jovem
5.
Brain ; 137(Pt 4): 1019-29, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24566671

RESUMO

Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is a disorder caused by recessive mutations in the gene DARS2, which encodes mitochondrial aspartyl-tRNA synthetase. Recent observations indicate that the phenotypic range of the disease is much wider than initially thought. Currently, no treatment is available. The aims of our study were (i) to explore a possible genotype-phenotype correlation; and (ii) to identify potential therapeutic agents that modulate the splice site mutations in intron 2 of DARS2, present in almost all patients. A cross-sectional observational study was performed in 78 patients with two DARS2 mutations in the Amsterdam and Helsinki databases up to December 2012. Clinical information was collected via questionnaires. An inventory was made of the DARS2 mutations in these patients and those previously published. An assay was developed to assess mitochondrial aspartyl-tRNA synthetase enzyme activity in cells. Using a fluorescence reporter system we screened for drugs that modulate DARS2 splicing. Clinical information of 66 patients was obtained. The clinical severity varied from infantile onset, rapidly fatal disease to adult onset, slow and mild disease. The most common phenotype was characterized by childhood onset and slow neurological deterioration. Full wheelchair dependency was rare and usually began in adulthood. In total, 60 different DARS2 mutations were identified, 13 of which have not been reported before. Except for 4 of 42 cases published by others, all patients were compound heterozygous. Ninety-four per cent of the patients had a splice site mutation in intron 2. The groups of patients sharing the same two mutations were too small for formal assessment of genotype-phenotype correlation. However, some combinations of mutations were consistently associated with a mild phenotype. The mitochondrial aspartyl-tRNA synthetase activity was strongly reduced in patient cells. Among the compounds screened, cantharidin was identified as the most potent modulator of DARS2 splicing. In conclusion, the phenotypic spectrum of leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation is wide, but most often the disease has a relatively slow and mild course. The available evidence suggests that the genotype influences the phenotype, but because of the high number of private mutations, larger numbers of patients are necessary to confirm this. The activity of mitochondrial aspartyl-tRNA synthetase is significantly reduced in patient cells. A compound screen established a 'proof of principle' that the splice site mutation can be influenced. This finding is promising for future therapeutic strategies.


Assuntos
Processamento Alternativo/efeitos dos fármacos , Aspartato-tRNA Ligase/deficiência , Leucoencefalopatias/complicações , Leucoencefalopatias/genética , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Adolescente , Adulto , Idade de Início , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Cantaridina/farmacologia , Criança , Pré-Escolar , Estudos Transversais , Análise Mutacional de DNA , Progressão da Doença , Inibidores Enzimáticos/farmacologia , Feminino , Estudos de Associação Genética , Humanos , Lactente , Leucoencefalopatias/tratamento farmacológico , Leucoencefalopatias/enzimologia , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/enzimologia , Mutação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Adulto Jovem
6.
Biochimie ; 100: 18-26, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24120687

RESUMO

Mammalian mitochondrial aminoacyl-tRNA synthetases are nuclear-encoded enzymes that are essential for mitochondrial protein synthesis. Due to an endosymbiotic origin of the mitochondria, many of them share structural domains with homologous bacterial enzymes of same specificity. This is also the case for human mitochondrial aspartyl-tRNA synthetase (AspRS) that shares the so-called bacterial insertion domain with bacterial homologs. The function of this domain in the mitochondrial proteins is unclear. Here, we show by bioinformatic analyses that the sequences coding for the bacterial insertion domain are less conserved in opisthokont and protist than in bacteria and viridiplantae. The divergence suggests a loss of evolutionary pressure on this domain for non-plant mitochondrial AspRSs. This discovery is further connected with the herein described occurrence of alternatively spliced transcripts of the mRNAs coding for some mammalian mitochondrial AspRSs. Interestingly, the spliced transcripts alternately lack one of the four exons that code for the bacterial insertion domain. Although we showed that the human alternative transcript is present in all tested tissues; co-exists with the full-length form, possesses 5'- and 3'-UTRs, a poly-A tail and is bound to polysomes, we were unable to detect the corresponding protein. The relaxed selective pressure combined with the occurrence of alternative splicing, involving a single structural sub-domain, favors the hypothesis of the loss of function of this domain for AspRSs of mitochondrial location. This evolutionary divergence is in line with other characteristics, established for the human mt-AspRS, that indicate a functional relaxation of non-viridiplantae mt-AspRSs when compared to bacterial and plant ones, despite their common ancestry.


Assuntos
Aspartato-tRNA Ligase/química , Mitocôndrias/genética , Proteínas Mitocondriais/química , Biossíntese de Proteínas , RNA Mensageiro/química , Processamento Alternativo , Alveolados/enzimologia , Alveolados/genética , Sequência de Aminoácidos , Amebozoários/enzimologia , Amebozoários/genética , Animais , Archaea/enzimologia , Archaea/genética , Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Sequência de Bases , Evolução Molecular , Fungos/enzimologia , Fungos/genética , Expressão Gênica , Humanos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Insercional , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Seleção Genética , Alinhamento de Sequência , Viridiplantae/enzimologia , Viridiplantae/genética
7.
PLoS One ; 8(1): e53958, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335982

RESUMO

Recessive inherited mutations in any of five subunits of the general protein synthesis factor eIF2B are responsible for a white mater neurodegenerative disease with a large clinical spectrum. The classical form is called Childhood Ataxia with CNS hypomyelination (CACH) or Vanishing White Matter Leukoencephalopathy (VWM). eIF2B-related disorders affect glial cells, despite the fact that eIF2B is a ubiquitous protein that functions as a guanine-nucleotide exchange factor (GEF) for its partner protein eIF2 in the translation initiation process in all eukaryotic cells. Decreased eIF2B activity measured by a GEF assay in patients' immortalised lymphocytic cells provides a biochemical diagnostic assay but is limited by the availability of eIF2 protein, which is classically purified from a mammalian cell source by column chromatography. Here we describe the generation of a recombinant expression system to produce purified human eIF2 from yeast cells. We demonstrate that human eIF2 can function in yeast cells in place of the equivalent yeast factor. We purify human eIF2 and the C-terminal domain of human eIF2Bε using affinity chromatography from engineered yeast cells and find that both function in a GEF assay: the first demonstration that this human eIF2Bε domain has GEF function. We show that CACH/VWM mutations within this domain reduce its activity. Finally we demonstrate that the recombinant eIF2 functions similarly to eIF2 purified from rat liver in GEF assays with CACH/VWM eIF2B-mutated patient derived lymphocytic cells.


Assuntos
Fator de Iniciação 2B em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucoencefalopatias/diagnóstico , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Domínio Catalítico , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2B em Eucariotos/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Mutação , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética
8.
Biochem J ; 450(2): 345-50, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23216004

RESUMO

The autosomal recessive white matter disorder LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is caused by mutations in DARS2, coding for mtAspRS (mitochondrial aspartyl-tRNA synthetase). Generally, patients are compound heterozygous for mutations in DARS2. Many different mutations have been identified in patients, including several missense mutations. In the present study, we have examined the effects of missense mutations found in LBSL patients on the expression, enzyme activity, localization and dimerization of mtAspRS, which is important for understanding the cellular defect underlying the pathogenesis of the disease. Nine different missense mutations were analysed and were shown to have various effects on mtAspRS properties. Several mutations have a direct effect on the catalytic activity of the enzyme; others have an effect on protein expression or dimerization. Most mutations have a clear impact on at least one of the properties of mtAspRS studied, probably resulting in a small contribution of the missense variants to the mitochondrial aspartylation activity in the cell.


Assuntos
Aspartato-tRNA Ligase/genética , Aspartato-tRNA Ligase/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Mitocôndrias/enzimologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Aspartato-tRNA Ligase/deficiência , Tronco Encefálico/metabolismo , Tronco Encefálico/patologia , Células HEK293 , Humanos , Imuno-Histoquímica , Leucoencefalopatias/patologia , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Medula Espinal/metabolismo , Medula Espinal/patologia , Transfecção
10.
Biochem J ; 441(3): 955-62, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22023289

RESUMO

LBSL (leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation) is an autosomal recessive white matter disorder with slowly progressive cerebellar ataxia, spasticity and dorsal column dysfunction. Magnetic resonance imaging shows characteristic abnormalities in the cerebral white matter and specific brain stem and spinal cord tracts. LBSL is caused by mutations in the gene DARS2, which encodes mtAspRS (mitochondrial aspartyl-tRNA synthetase). The selective involvement of specific white matter tracts in LBSL is striking since this protein is ubiquitously expressed. Almost all LBSL patients have one mutation in intron 2 of DARS2, affecting the splicing of the third exon. Using a splicing reporter construct, we find cell-type-specific differences in the sensitivity to these mutations: the mutations have a larger effect on exon 3 exclusion in neural cell lines, especially neuronal cell lines, than in non-neural cell lines. Furthermore, correct inclusion of exon 3 in the normal mtAspRS mRNA occurs less efficiently in neural cells than in other cell types, and this effect is again most pronounced in neuronal cells. The combined result of these two effects may explain the selective vulnerability of specific white matter tracts in LBSL patients.


Assuntos
Processamento Alternativo/fisiologia , Aspartato-tRNA Ligase/genética , Tronco Encefálico/patologia , Ácido Láctico/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/metabolismo , Medula Espinal/patologia , Processamento Alternativo/genética , Aspartato-tRNA Ligase/metabolismo , Tronco Encefálico/metabolismo , Células Cultivadas , Células HEK293 , Células HeLa , Humanos , Leucoencefalopatias/patologia , Mitocôndrias/genética , Mitocôndrias/metabolismo , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/metabolismo , Transfecção , Regulação para Cima
11.
Brain ; 134(Pt 11): 3342-54, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22006981

RESUMO

Megalencephalic leucoencephalopathy with subcortical cysts is a genetic brain disorder with onset in early childhood. Affected infants develop macrocephaly within the first year of life, after several years followed by slowly progressive, incapacitating cerebellar ataxia and spasticity. From early on, magnetic resonance imaging shows diffuse signal abnormality and swelling of the cerebral white matter, with evidence of highly increased white matter water content. In most patients, the disease is caused by mutations in the gene MLC1, which encodes a plasma membrane protein almost exclusively expressed in brain and at lower levels in leucocytes. Within the brain, MLC1 is mainly located in astrocyte-astrocyte junctions adjacent to the blood-brain and cereborspinal fluid-brain barriers. Thus far, the function of MLC1 has remained unknown. We tested the hypothesis that MLC1 mutations cause a defect in ion currents involved in water and ion homeostasis, resulting in cerebral white matter oedema. Using whole-cell patch clamp studies we demonstrated an association between MLC1 expression and anion channel activity in different cell types, most importantly astrocytes. The currents were absent in chloride-free medium and in cells with disease-causing MLC1 mutations. MLC1-dependent currents were greatly enhanced by hypotonic pretreatment causing cell swelling, while ion channel blockers, including Tamoxifen, abolished the currents. Down regulation of endogenous MLC1 expression in astrocytes by small interfering RNA greatly reduced the activity of this channel, which was rescued by overexpression of normal MLC1. The current-voltage relationship and the pharmacological profiles of the currents indicated that the channel activated by MLC1 expression is a volume-regulated anion channel. Such channels are involved in regulatory volume decrease. We showed that regulatory volume decrease was hampered in lymphoblasts from patients with megalencephalic leucoencephalopathy. A similar trend was observed in astrocytes with decreased MLC1 expression; this effect was rescued by overexpression of normal MLC1. In the present study, we show that absence or mutations of the MLC1 protein negatively impact both volume-regulated anion channel activity and regulatory volume decrease, indicating that megalencephalic leucoencephalopathy is caused by a disturbance of cell volume regulation mediated by chloride transport.


Assuntos
Astrócitos/patologia , Cloretos/metabolismo , Cistos/fisiopatologia , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Transporte de Íons/fisiologia , Proteínas de Membrana/genética , Astrócitos/metabolismo , Tamanho Celular , Cistos/metabolismo , Cistos/patologia , Células HEK293 , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Proteínas de Membrana/metabolismo
13.
Hum Mol Genet ; 20(16): 3266-77, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21624973

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in MLC1 or GLIALCAM. The GLIALCAM gene product functions as an MLC1 beta-subunit. We aim to further clarify the molecular mechanisms of MLC caused by mutations in MLC1 or GLIALCAM. For this purpose, we analyzed a human post-mortem brain obtained from an MLC patient, who was homozygous for a missense mutation (S69L) in MLC1. We showed that this mutation affects the stability of MLC1 in vitro and reduces MLC1 protein levels in the brain to almost undetectable. However, the amount of GlialCAM and its localization were nearly unaffected, indicating that MLC1 is not necessary for GlialCAM expression or targeting. These findings were supported by experiments in primary astrocytes and in heterologous cells. In addition, we demonstrated that MLC1 and GlialCAM form homo- and hetero-complexes and that MLC-causing mutations in GLIALCAM mainly reduce the formation of GlialCAM homo-complexes, leading to a defect in the trafficking of GlialCAM alone to cell junctions. GLIALCAM mutations also affect the trafficking of its associated molecule MLC1, explaining why GLIALCAM and MLC1 mutations lead to the same disease: MLC.


Assuntos
Cistos/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Proteínas de Membrana/genética , Mutação/genética , Proteínas/genética , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteínas de Ciclo Celular , Cistos/patologia , Evolução Fatal , Feminino , Células HEK293 , Células HeLa , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Humanos , Pessoa de Meia-Idade , Proteínas Mutantes/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Transporte Proteico , Interferência de RNA , Ratos , Transfecção
15.
Hum Mutat ; 32(9): 1036-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21560189

RESUMO

Autosomal recessive mutations in eukaryotic initiation factor 2B (eIF2B) cause leukoencephalopathy vanishing white matter with a wide clinical spectrum. eIF2B comprises five subunits (α-ε; genes EIF2B1, 2, 3, 4 and 5) and is the guanine nucleotide-exchange factor (GEF) for eIF2. It plays a key role in protein synthesis. Here, we have studied the functional effects of selected VWM mutations in EIF2B2-5 by coexpressing mutated and wild-type subunits in human cells. The observed functional effects are very diverse, including defects in eIF2B complex integrity; binding to the regulatory α-subunit; substrate binding; and GEF activity. Activity data for recombinant eIF2B complexes agree closely with those for patient-derived cells with the same mutations. Some mutations do not affect these parameters even though they cause severe disease. These findings are important for three reasons; they demonstrate that measuring eIF2B activity in patients' cells has limited value as a diagnostic test; they imply that severe disease can result from alterations in eIF2B function other than defects in complex integrity, substrate binding or GEF activity, and last, the diversity of functional effects of VWM mutations implies that seeking agents to manage or treat VWM should focus on downstream effectors of eIF2B, not restoring eIF2B activity.


Assuntos
Fator de Iniciação 2B em Eucariotos/deficiência , Fator de Iniciação 2B em Eucariotos/metabolismo , Leucoencefalopatias/genética , Complexos Multiproteicos/metabolismo , Bioensaio , Extratos Celulares , Fator de Iniciação 2B em Eucariotos/química , Células HEK293 , Humanos , Proteínas Mutantes/metabolismo , Mutação/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Homologia de Sequência de Aminoácidos
16.
J Child Neurol ; 26(6): 773-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21493805

RESUMO

A 17-year-old Indian boy with gradually progressive ataxia with onset at 12 years of age is described. Magnetic resonance imaging (MRI) of the brain revealed extensive, inhomogeneous signal abnormalities in the cerebral white matter, with involvement of selected tracts in the brain stem and spinal cord. The imaging findings were characteristic of leukoencephalopathy with brain stem and spinal cord involvement and high lactate, a recently described leukodystrophy. Interestingly, magnetic resonance spectroscopy of the abnormal white matter did not reveal elevated lactate. The patient was compound heterozygous for 2 new mutations in DARS2, genetically confirming the diagnosis.


Assuntos
Aspartato-tRNA Ligase/genética , Tronco Encefálico/metabolismo , Ácido Láctico/metabolismo , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Medula Espinal/metabolismo , Adolescente , Humanos , Imageamento por Ressonância Magnética , Masculino
17.
Am J Hum Genet ; 88(4): 422-32, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21419380

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a leukodystrophy characterized by early-onset macrocephaly and delayed-onset neurological deterioration. Recessive MLC1 mutations are observed in 75% of patients with MLC. Genetic-linkage studies failed to identify another gene. We recently showed that some patients without MLC1 mutations display the classical phenotype; others improve or become normal but retain macrocephaly. To find another MLC-related gene, we used quantitative proteomic analysis of affinity-purified MLC1 as an alternative approach and found that GlialCAM, an IgG-like cell adhesion molecule that is also called HepaCAM and is encoded by HEPACAM, is a direct MLC1-binding partner. Analysis of 40 MLC patients without MLC1 mutations revealed multiple different HEPACAM mutations. Ten patients with the classical, deteriorating phenotype had two mutations, and 18 patients with the improving phenotype had one mutation. Most parents with a single mutation had macrocephaly, indicating dominant inheritance. In some families with dominant HEPACAM mutations, the clinical picture and magnetic resonance imaging normalized, indicating that HEPACAM mutations can cause benign familial macrocephaly. In other families with dominant HEPACAM mutations, patients had macrocephaly and mental retardation with or without autism. Further experiments demonstrated that GlialCAM and MLC1 both localize in axons and colocalize in junctions between astrocytes. GlialCAM is additionally located in myelin. Mutant GlialCAM disrupts the localization of MLC1-GlialCAM complexes in astrocytic junctions in a manner reflecting the mode of inheritance. In conclusion, GlialCAM is required for proper localization of MLC1. HEPACAM is the second gene found to be mutated in MLC. Dominant HEPACAM mutations can cause either macrocephaly and mental retardation with or without autism or benign familial macrocephaly.


Assuntos
Transtorno Autístico/genética , Moléculas de Adesão Celular Neuronais/genética , Deficiência Intelectual/genética , Megalencefalia/genética , Mutação , Proteínas/genética , Sequência de Aminoácidos , Animais , Transtorno Autístico/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Cistos/genética , Cistos/metabolismo , Genes Dominantes , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Humanos , Deficiência Intelectual/metabolismo , Megalencefalia/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Proteínas/metabolismo , Ratos , Homologia de Sequência de Aminoácidos
18.
Neurobiol Dis ; 43(1): 228-38, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440627

RESUMO

Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of leukodystrophy, in the majority of cases caused by mutations in the MLC1 gene. MRI from MLC patients shows diffuse cerebral white matter signal abnormality and swelling, with evidence of increased water content. Histopathology in a MLC patient shows vacuolation of myelin, which causes the cerebral white matter swelling. MLC1 protein is expressed in astrocytic processes that are part of blood- and cerebrospinal fluid-brain barriers. We aimed to create an astrocyte cell model of MLC disease. The characterization of rat astrocyte cultures revealed MLC1 localization in cell-cell contacts, which contains other proteins described typically in tight and adherent junctions. MLC1 localization in these contacts was demonstrated to depend on the actin cytoskeleton; it was not altered when disrupting the microtubule or the GFAP networks. In human tissues, MLC1 and the protein Zonula Occludens 1 (ZO-1), which is linked to the actin cytoskeleton, co-localized by EM immunostaining and were specifically co-immunoprecipitated. To create an MLC cell model, knockdown of MLC1 in primary astrocytes was performed. Reduction of MLC1 expression resulted in the appearance of intracellular vacuoles. This vacuolation was reversed by the co-expression of human MLC1. Re-examination of a human brain biopsy from an MLC patient revealed that vacuoles were also consistently present in astrocytic processes. Thus, vacuolation of astrocytes is also a hallmark of MLC disease.


Assuntos
Astrócitos/metabolismo , Cistos/genética , Cistos/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Vacúolos/genética , Adolescente , Animais , Astrócitos/patologia , Células Cultivadas , Cistos/fisiopatologia , Regulação para Baixo/genética , Líquido Extracelular/metabolismo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/fisiopatologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Ratos , Ratos Sprague-Dawley , Vacúolos/patologia
19.
Brain Dev ; 33(9): 713-7, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21277128

RESUMO

Leukoencephalopathy with brain stem and spinal cord involvement and elevated white matter lactate (LBSL) is a very rare autosomal recessive mitochondrial disorder. Clinically patients have slowly progressive ataxia, pyramidal syndrome and dorsal column dysfunction. The disease is defined on the basis of characteristic abnormalities observed on magnetic resonance imaging such as inhomogeneous, spotty involvement of the cerebral white matter, selective involvement of brain stem and spinal cord tracts as well as lactate elevation in the affected white matter on spectroscopy. We present the first identified Polish patient suffering from LBSL confirmed molecularly.


Assuntos
Leucoencefalopatias/diagnóstico , Leucoencefalopatias/fisiopatologia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/fisiopatologia , Aspartato-tRNA Ligase/genética , Encéfalo/patologia , Tronco Encefálico/química , Análise Mutacional de DNA , Humanos , Ácido Láctico/análise , Leucoencefalopatias/genética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Masculino , Doenças Mitocondriais/genética , Mutação , Polônia , Medula Espinal/química , Medula Espinal/patologia , Adulto Jovem
20.
J Child Neurol ; 26(3): 366-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21115745

RESUMO

A 5-year-old boy who presented with progressive ataxia, neuroregression, and worsening with febrile illnesses is described. He also had myoclonic jerks and ptosis. His elder sister had died of a similar illness. Serial magnetic resonance imaging of the brain demonstrated extensive abnormality of the cerebral white matter with rarefaction and cystic degeneration, suggestive of vanishing white matter disease. The patient was found to be compound heterozygous for 2 new mutations in the gene EIF2B5, confirming the diagnosis.


Assuntos
Blefaroptose/complicações , Epilepsias Mioclônicas/complicações , Leucoencefalopatias/complicações , Pré-Escolar , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA