Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370617

RESUMO

The role of splicing dysregulation in cancer is underscored by splicing factor mutations; however, its impact in the absence of such rare mutations is poorly understood. To reveal complex patient subtypes and putative regulators of pathogenic splicing in Acute Myeloid Leukemia (AML), we developed a new approach called OncoSplice. Among diverse new subtypes, OncoSplice identified a biphasic poor prognosis signature that partially phenocopies U2AF1-mutant splicing, impacting thousands of genes in over 40% of adult and pediatric AML cases. U2AF1-like splicing co-opted a healthy circadian splicing program, was stable over time and induced a leukemia stem cell (LSC) program. Pharmacological inhibition of the implicated U2AF1-like splicing regulator, PRMT5, rescued leukemia mis-splicing and inhibited leukemic cell growth. Genetic deletion of IRAK4, a common target of U2AF1-like and PRMT5 treated cells, blocked leukemia development in xenograft models and induced differentiation. These analyses reveal a new prognostic alternative-splicing mechanism in malignancy, independent of splicing-factor mutations.

2.
Front Oncol ; 14: 1343004, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371625

RESUMO

MCL1 is a member of the BCL2 family of apoptosis regulators, which play a critical role in promoting cancer survival and drug resistance. We previously described PRT1419, a potent, MCL1 inhibitor with anti-tumor efficacy in various solid and hematologic malignancies. To identify novel biomarkers that predict sensitivity to MCL1 inhibition, we conducted a gene essentiality analysis using gene dependency data generated from CRISPR/Cas9 cell viability screens. We observed that clear cell renal cancer (ccRCC) cell lines with damaging PBRM1 mutations displayed a strong dependency on MCL1. PBRM1 (BAF180), is a chromatin-targeting subunit of mammalian pBAF complexes. PBRM1 is frequently altered in various cancers particularly ccRCC with ~40% of tumors harboring damaging PBRM1 alterations. We observed potent inhibition of tumor growth and induction of apoptosis by PRT1419 in various preclinical models of PBRM1-mutant ccRCC but not PBRM1-WT. Depletion of PBRM1 in PBRM1-WT ccRCC cell lines induced sensitivity to PRT1419. Mechanistically, PBRM1 depletion coincided with increased expression of pro-apoptotic factors, priming cells for caspase-mediated apoptosis following MCL1 inhibition. Increased MCL1 activity has been described as a resistance mechanism to Sunitinib and Everolimus, two approved agents for ccRCC. PRT1419 synergized with both agents to potently inhibit tumor growth in PBRM1-loss ccRCC. PRT2527, a potent CDK9 inhibitor which depletes MCL1, was similarly efficacious in monotherapy and in combination with Sunitinib in PBRM1-loss cells. Taken together, these findings suggest PBRM1 loss is associated with MCL1i sensitivity in ccRCC and provide rationale for the evaluation of PRT1419 and PRT2527 for the treatment for PBRM1-deficient ccRCC.

3.
Blood Adv ; 8(1): 150-163, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-37782774

RESUMO

ABSTRACT: Mantle cell lymphoma (MCL) is an incurable B-cell non-Hodgkin lymphoma, and patients who relapse on targeted therapies have poor prognosis. Protein arginine methyltransferase 5 (PRMT5), an enzyme essential for B-cell transformation, drives multiple oncogenic pathways and is overexpressed in MCL. Despite the antitumor activity of PRMT5 inhibition (PRT-382/PRT-808), drug resistance was observed in a patient-derived xenograft (PDX) MCL model. Decreased survival of mice engrafted with these PRMT5 inhibitor-resistant cells vs treatment-naive cells was observed (P = .005). MCL cell lines showed variable sensitivity to PRMT5 inhibition. Using PRT-382, cell lines were classified as sensitive (n = 4; 50% inhibitory concentration [IC50], 20-140 nM) or primary resistant (n = 4; 340-1650 nM). Prolonged culture of sensitive MCL lines with drug escalation produced PRMT5 inhibitor-resistant cell lines (n = 4; 200-500 nM). This resistant phenotype persisted after prolonged culture in the absence of drug and was observed with PRT-808. In the resistant PDX and cell line models, symmetric dimethylarginine reduction was achieved at the original PRMT5 inhibitor IC50, suggesting activation of alternative resistance pathways. Bulk RNA sequencing of resistant cell lines and PDX relative to sensitive or short-term-treated cells, respectively, highlighted shared upregulation of multiple pathways including mechanistic target of rapamycin kinase [mTOR] signaling (P < 10-5 and z score > 0.3 or < 0.3). Single-cell RNA sequencing analysis demonstrated a strong shift in global gene expression, with upregulation of mTOR signaling in resistant PDX MCL samples. Targeted blockade of mTORC1 with temsirolimus overcame the PRMT5 inhibitor-resistant phenotype, displayed therapeutic synergy in resistant MCL cell lines, and improved survival of a resistant PDX.


Assuntos
Linfoma de Célula do Manto , Humanos , Camundongos , Animais , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Transdução de Sinais , Inibidores Enzimáticos/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo
4.
Cancer Res Commun ; 3(11): 2233-2243, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37861290

RESUMO

Expression of protein arginine methyltransferase 5 (PRMT5) is highly positively correlated to DNA damage repair (DDR) and DNA replication pathway genes in many types of cancer cells, including ovarian and breast cancer. In the current study, we investigated whether pharmacologic inhibition of PRMT5 downregulates DDR/DNA replication pathway genes and sensitizes cancer cells to chemotherapy and PARP inhibition. Potent and selective PRMT5 inhibitors significantly downregulate expression of multiple DDR and DNA replication genes in cancer cells. Mechanistically, PRMT5 inhibition reduces the presence of PRMT5 and H4R3me2s on promoter regions of DDR genes such as BRCA1/2, RAD51, and ATM. PRMT5 inhibition also promotes global alternative splicing changes. Our data suggest that PRMT5 inhibition regulates expression of FANCA, PNKP, and ATM by promoting exon skipping and intron retention. Combining C220 or PRT543 with olaparib or chemotherapeutic agents such as cisplatin demonstrates a potent synergistic interaction in breast and ovarian cancer cells in vitro. Moreover, combination of PRT543 with olaparib effectively inhibits the growth of patient-derived breast and ovarian cancer xenografts. Furthermore, PRT543 treatment significantly inhibits growth of olaparib-resistant tumors in vivo. These studies reveal a novel mechanism of PRMT5 inhibition and suggest beneficial combinatorial effects with other therapies, particularly in patients with tumors that are resistant to therapies dependent on DNA damage as their mechanism of action. SIGNIFICANCE: Patients with advanced cancers frequently develop resistance to chemotherapy or PARP inhibitors mainly due to circumvention and/or restoration of the inactivated DDR pathway genes. We demonstrate that inhibition of PRMT5 significantly downregulates a broad range of the DDR and DNA replication pathway genes. PRMT5 inhibitors combined with chemotherapy or PARP inhibitors demonstrate synergistic suppression of cancer cell proliferation and growth in breast and ovarian tumor models, including PARP inhibitor-resistant tumors.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Humanos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteína BRCA1/genética , Proteína BRCA2/genética , Inibidores Enzimáticos , Dano ao DNA , Neoplasias da Mama/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Proteína-Arginina N-Metiltransferases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Enzimas Reparadoras do DNA/genética
5.
Blood Adv ; 7(20): 6211-6224, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37327122

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy that comprises up to 6% of non-Hodgkin lymphomas diagnosed annually and is associated with a poor prognosis. The average overall survival of patients with MCL is 5 years, and for most patients who progress on targeted agents, survival remains at a dismal 3 to 8 months. There is a major unmet need to identify new therapeutic approaches that are well tolerated to improve treatment outcomes and quality of life. The protein arginine methyltransferase 5 (PRMT5) enzyme is overexpressed in MCL and promotes growth and survival. Inhibition of PRMT5 drives antitumor activity in MCL cell lines and preclinical murine models. PRMT5 inhibition reduced the activity of prosurvival AKT signaling, which led to the nuclear translocation of FOXO1 and modulation of its transcriptional activity. Chromatin immunoprecipitation and sequencing identified multiple proapoptotic BCL-2 family members as FOXO1-bound genomic loci. We identified BAX as a direct transcriptional target of FOXO1 and demonstrated its critical role in the synergy observed between the selective PRMT5 inhibitor, PRT382, and the BCL-2 inhibitor, venetoclax. Single-agent and combination treatments were performed in 9 MCL lines. Loewe synergy scores showed significant levels of synergy in most MCL lines tested. Preclinical, in vivo evaluation of this strategy in multiple MCL models showed therapeutic synergy with combination venetoclax/PRT382 treatment with an increased survival advantage in 2 patient-derived xenograft models (P ≤ .0001, P ≤ .0001). Our results provide mechanistic rationale for the combination of PRMT5 inhibition and venetoclax to treat patients with MCL.


Assuntos
Antineoplásicos , Compostos Bicíclicos Heterocíclicos com Pontes , Linfoma de Célula do Manto , Sulfonamidas , Animais , Humanos , Camundongos , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Qualidade de Vida
6.
Blood ; 142(10): 887-902, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37267517

RESUMO

Mantle cell lymphoma (MCL) is an incurable B-cell malignancy with an overall poor prognosis, particularly for patients that progress on targeted therapies. Novel, more durable treatment options are needed for patients with MCL. Protein arginine methyltransferase 5 (PRMT5) is overexpressed in MCL and plays an important oncogenic role in this disease via epigenetic and posttranslational modification of cell cycle regulators, DNA repair genes, components of prosurvival pathways, and RNA splicing regulators. The mechanism of targeting PRMT5 in MCL remains incompletely characterized. Here, we report on the antitumor activity of PRMT5 inhibition in MCL using integrated transcriptomics of in vitro and in vivo models of MCL. Treatment with a selective small-molecule inhibitor of PRMT5, PRT-382, led to growth arrest and cell death and provided a therapeutic benefit in xenografts derived from patients with MCL. Transcriptional reprograming upon PRMT5 inhibition led to restored regulatory activity of the cell cycle (p-RB/E2F), apoptotic cell death (p53-dependent/p53-independent), and activation of negative regulators of B-cell receptor-PI3K/AKT signaling (PHLDA3, PTPROt, and PIK3IP1). We propose pharmacologic inhibition of PRMT5 for patients with relapsed/refractory MCL and identify MTAP/CDKN2A deletion and wild-type TP53 as biomarkers that predict a favorable response. Selective targeting of PRMT5 has significant activity in preclinical models of MCL and warrants further investigation in clinical trials.


Assuntos
Linfoma de Célula do Manto , Fosfatidilinositol 3-Quinases , Adulto , Humanos , Linhagem Celular Tumoral , Linfoma de Célula do Manto/tratamento farmacológico , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transdução de Sinais , Proteína Supressora de Tumor p53/metabolismo
7.
Nat Commun ; 14(1): 97, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36609611

RESUMO

Richter's Transformation (RT) is a poorly understood and fatal progression of chronic lymphocytic leukemia (CLL) manifesting histologically as diffuse large B-cell lymphoma. Protein arginine methyltransferase 5 (PRMT5) is implicated in lymphomagenesis, but its role in CLL or RT progression is unknown. We demonstrate herein that tumors uniformly overexpress PRMT5 in patients with progression to RT. Furthermore, mice with B-specific overexpression of hPRMT5 develop a B-lymphoid expansion with increased risk of death, and Eµ-PRMT5/TCL1 double transgenic mice develop a highly aggressive disease with transformation that histologically resembles RT; where large-scale transcriptional profiling identifies oncogenic pathways mediating PRMT5-driven disease progression. Lastly, we report the development of a SAM-competitive PRMT5 inhibitor, PRT382, with exclusive selectivity and optimal in vitro and in vivo activity compared to available PRMT5 inhibitors. Taken together, the discovery that PRMT5 drives oncogenic pathways promoting RT provides a compelling rationale for clinical investigation of PRMT5 inhibitors such as PRT382 in aggressive CLL/RT cases.


Assuntos
Leucemia Linfocítica Crônica de Células B , Linfoma Difuso de Grandes Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Linfoma Difuso de Grandes Células B/patologia
8.
Sci Adv ; 8(37): eabp9005, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36112677

RESUMO

Using a genome-wide CRISPR screen, we identified CDK9, DHODH, and PRMT5 as synthetic lethal partners with gilteritinib treatment in fms-like tyrosine kinase 3 (FLT3)-internal tandem duplication (ITD) acute myeloid leukemia (AML) and genetically and pharmacologically validated their roles in gilteritinib sensitivity. The presence of FLT3-ITD is associated with an increase in anaerobic glycolysis, rendering leukemia cells highly sensitive to inhibition of glycolysis. Supportive of this, our data show the enrichment of single guide RNAs targeting 28 glycolysis-related genes upon gilteritinib treatment, suggesting that switching from glycolysis to oxidative phosphorylation (OXPHOS) may represent a metabolic adaption of AML in gilteritinib resistance. CDK9i/FLT3i, DHODHi/FLT3i, and PRMT5i/FLT3i pairs mechanistically converge on OXPHOS and purine biosynthesis blockade, implying that targeting the metabolic functions of these three genes and/or proteins may represent attractive strategies to sensitize AML to gilteritinib treatment. Our findings provide the basis for maximizing therapeutic impact of FLT3-ITD inhibitors and a rationale for a clinical trial of these novel combinations.

9.
Bioorg Med Chem Lett ; 73: 128884, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35835377

RESUMO

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues, resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with a variety of ailments including metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a 3-point pharmacophore for 11ß-HSD1 that was utilized to design a 2-spiroproline derivative as a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of several leads, such as compounds 39 and 51. Importantly, deleterious hERG inhibition and pregnane X receptor induction were mitigated by the introduction of a 4-hydroxyl group to the proline ring system.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidrocortisona/metabolismo
10.
Bioorg Med Chem Lett ; 69: 128782, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35537608

RESUMO

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a three-point pharmacophore for 11ß-HSD1 that was utilized to design a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of INCB13739. Clinical evaluation of INCB13739 confirmed for the first time that tissue-specific inhibition of 11ß-HSD1 in patients with type 2 diabetes mellitus was efficacious in controlling glucose levels and reducing cardiovascular risk factors.


Assuntos
Diabetes Mellitus Tipo 2 , Síndrome Metabólica , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Hidrocortisona/metabolismo , Síndrome Metabólica/metabolismo
11.
Cancer Discov ; 12(6): 1482-1499, 2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35254416

RESUMO

Blocking the activity of the programmed cell death protein 1 (PD-1) inhibitory receptor with therapeutic antibodies against either the ligand (PD-L1) or PD-1 itself has proven to be an effective treatment modality for multiple cancers. Contrasting with antibodies, small molecules could demonstrate increased tissue penetration, distinct pharmacology, and potentially enhanced antitumor activity. Here, we describe the identification and characterization of INCB086550, a novel, oral, small-molecule PD-L1 inhibitor. In vitro, INCB086550 selectively and potently blocked the PD-L1/PD-1 interaction, induced PD-L1 dimerization and internalization, and induced stimulation-dependent cytokine production in primary human immune cells. In vivo, INCB086550 reduced tumor growth in CD34+ humanized mice and induced T-cell activation gene signatures, consistent with PD-L1/PD-1 pathway blockade. Preliminary data from an ongoing phase I study confirmed PD-L1/PD-1 blockade in peripheral blood cells, with increased immune activation and tumor growth control. These data support continued clinical evaluation of INCB086550 as an alternative to antibody-based therapies. SIGNIFICANCE: We have identified a potent small-molecule inhibitor of PD-L1, INCB086550, which has biological properties similar to PD-L1/PD-1 monoclonal antibodies and may represent an alternative to antibody therapy. Preliminary clinical data in patients demonstrated increased immune activation and tumor growth control, which support continued clinical evaluation of this approach. See related commentary by Capparelli and Aplin, p. 1413. This article is highlighted in the In This Issue feature, p. 1397.


Assuntos
Antígeno B7-H1 , Neoplasias , Animais , Humanos , Inibidores de Checkpoint Imunológico , Ativação Linfocitária , Camundongos , Neoplasias/tratamento farmacológico , Receptor de Morte Celular Programada 1
12.
J Med Chem ; 64(15): 10666-10679, 2021 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-34269576

RESUMO

Aberrant activation of FGFR has been linked to the pathogenesis of many tumor types. Selective inhibition of FGFR has emerged as a promising approach for cancer treatment. Herein, we describe the discovery of compound 38 (INCB054828, pemigatinib), a highly potent and selective inhibitor of FGFR1, FGFR2, and FGFR3 with excellent physiochemical properties and pharmacokinetic profiles. Pemigatinib has received accelerated approval from the U.S. Food and Drug Administration for the treatment of adults with previously treated, unresectable locally advanced or metastatic cholangiocarcinoma with a FGFR2 fusion or other rearrangement. Additional clinical trials are ongoing to evaluate pemigatinib in patients with FGFR alterations.


Assuntos
Descoberta de Drogas , Morfolinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Morfolinas/síntese química , Morfolinas/química , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Relação Estrutura-Atividade , Estados Unidos , United States Food and Drug Administration
13.
Nat Commun ; 12(1): 4445, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34290245

RESUMO

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.


Assuntos
Ligante 4-1BB/agonistas , Anticorpos Biespecíficos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Linfócitos T CD8-Positivos/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/farmacologia , Ligante 4-1BB/imunologia , Animais , Anticorpos Biespecíficos/imunologia , Antígeno B7-H1/imunologia , Linfócitos T CD8-Positivos/imunologia , Epitopos , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Tolerância Imunológica/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Imunoterapia , Ativação Linfocitária/efeitos dos fármacos
14.
PLoS One ; 16(5): e0250839, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33989303

RESUMO

Non-Hodgkin lymphoma (NHL) is a heterogeneous group of blood cancers arising in lymphoid tissues that commonly effects both humans and dogs. Protein arginine methyltransferase 5 (PRMT5), an enzyme that catalyzes the symmetric di-methylation of arginine residues, is frequently overexpressed and dysregulated in both human solid and hematologic malignancies. In human lymphoma, PRMT5 is a known driver of malignant transformation and oncogenesis, however, the expression and role of PRMT5 in canine lymphoma has not been explored. To explore canine lymphoma as a useful comparison to human lymphoma while validating PRMT5 as a rational therapeutic target in both, we characterized expression patterns of PRMT5 in canine lymphoma tissue microarrays, primary lymphoid biopsies, and canine lymphoma-derived cell lines. The inhibition of PRMT5 led to growth suppression and induction of apoptosis, while selectively decreasing global marks of symmetric dimethylarginine (SDMA) and histone H4 arginine 3 symmetric dimethylation. We performed ATAC-sequencing and gene expression microarrays with pathway enrichment analysis to characterize genome-wide changes in chromatin accessibility and whole-transcriptome changes in canine lymphoma cells lines upon PRMT5 inhibition. This work validates PRMT5 as a promising therapeutic target for canine lymphoma and supports the continued use of the spontaneously occurring canine lymphoma model for the preclinical development of PRMT5 inhibitors for the treatment of human NHL.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Linfoma não Hodgkin/patologia , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Proteína-Arginina N-Metiltransferases/metabolismo , Animais , Apoptose/fisiologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Cães , Humanos , Linfoma não Hodgkin/genética , Metilação , Proteína-Arginina N-Metiltransferases/genética
15.
Curr Protoc ; 1(2): e51, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33587334

RESUMO

Evaluation of in vivo potencies plays an important role in drug discovery. Traditionally, the cellular activity and percent of plasma protein binding of a test agent are evaluated separately, with the plasma protein binding-adjusted cellular potency computation used to estimate in vivo potency. This process is costly, takes weeks to complete, and is increasingly unreliable for compounds that bind extensively to plasma proteins. Described in this article is a simple, high-throughput human plasma in-cell Western (ICW) assay that directly incorporates plasma protein binding into a cellular pharmacodynamic assay to provide a rapid and accurate estimate of in vivo potencies. The assay is versatile and can be readily employed for various targets that require short treatment periods for displaying maximal biological responses. © 2021 Wiley Periodicals LLC. Basic Protocol: Concentration-dependent human plasma ICW assay to determine test compound IC50 against the target of interest.


Assuntos
Bioensaio , Descoberta de Drogas , Proteínas Sanguíneas/metabolismo , Humanos , Ligação Proteica
16.
Eur J Pharmacol ; 885: 173505, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32861662

RESUMO

Pharmacological modulation of the Janus kinase (JAK) family has achieved clinically meaningful therapeutic outcomes for the treatment of inflammatory and hematopoietic diseases. Several JAK1 selective compounds are being investigated clinically to determine their anti-inflammatory potential. We used recombinant enzymes and primary human lymphocytes to assess the JAK1 specificity of itacitinib (INCB039110) and study inhibition of signal transducers and activators of transcription (STAT) signaling. Rodent models of arthritis and inflammatory bowel disease were subsequently explored to elucidate the efficacy of orally administered itacitinib on inflammatory pathogenesis. Itacitinib is a potent and selective JAK1 inhibitor when profiled against the other JAK family members. Upon oral administration in rodents, itacitinib achieved dose-dependent pharmacokinetic exposures that highly correlated with STAT3 pharmacodynamic pathway inhibition. Itacitinib ameliorated symptoms and pathology of established experimentally-induced arthritis in a dose-dependent manner. Furthermore, itacitinib effectively delayed disease onset, reduced symptom severity, and accelerated recovery in three distinct mouse models of inflammatory bowel disease. Low dose itacitinib administered via cannula directly into the colon was highly efficacious in TNBS-induced colitis but with minimal systemic drug exposure, suggesting localized JAK1 inhibition is sufficient for disease amelioration. Itacitinib treatment in an acute graft-versus-host disease (GvHD) model rapidly reduced inflammatory markers within lymphocytes and target tissue, resulting in a marked improvement in disease symptoms. This is the first manuscript describing itacitinib as a potent and selective JAK1 inhibitor with anti-inflammatory activity across multiple preclinical disease models. These data support the scientific rationale for ongoing clinical trials studying itacitinib in select GvHD patient populations.


Assuntos
Azetidinas/farmacologia , Inflamação/tratamento farmacológico , Ácidos Isonicotínicos/farmacologia , Janus Quinase 1/antagonistas & inibidores , Animais , Artrite Experimental/tratamento farmacológico , Azetidinas/farmacocinética , Azetidinas/uso terapêutico , Quimiocina CCL2/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Relação Dose-Resposta a Droga , Doença Enxerto-Hospedeiro/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Ácidos Isonicotínicos/farmacocinética , Ácidos Isonicotínicos/uso terapêutico , Linfócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew , Fatores de Transcrição STAT/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos
17.
Cancer Discov ; 10(11): 1742-1757, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32669286

RESUMO

We investigated the role of PRMT5 in myeloproliferative neoplasm (MPN) pathogenesis and aimed to elucidate key PRMT5 targets contributing to MPN maintenance. PRMT5 is overexpressed in primary MPN cells, and PRMT5 inhibition potently reduced MPN cell proliferation ex vivo. PRMT5 inhibition was efficacious at reversing elevated hematocrit, leukocytosis, and splenomegaly in a model of JAK2V617F+ polycythemia vera and leukocyte and platelet counts, hepatosplenomegaly, and fibrosis in the MPLW515L model of myelofibrosis. Dual targeting of JAK and PRMT5 was superior to JAK or PRMT5 inhibitor monotherapy, further decreasing elevated counts and extramedullary hematopoiesis in vivo. PRMT5 inhibition reduced expression of E2F targets and altered the methylation status of E2F1 leading to attenuated DNA damage repair, cell-cycle arrest, and increased apoptosis. Our data link PRMT5 to E2F1 regulatory function and MPN cell survival and provide a strong mechanistic rationale for clinical trials of PRMT5 inhibitors in MPN. SIGNIFICANCE: Expression of PRMT5 and E2F targets is increased in JAK2V617F+ MPN. Pharmacologic inhibition of PRMT5 alters the methylation status of E2F1 and shows efficacy in JAK2V617F/MPLW515L MPN models and primary samples. PRMT5 represents a potential novel therapeutic target for MPN, which is now being clinically evaluated.This article is highlighted in the In This Issue feature, p. 1611.


Assuntos
Fator de Transcrição E2F1/metabolismo , Redes Reguladoras de Genes/genética , Janus Quinase 2/metabolismo , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Humanos , Metilação , Mutação , Proteína-Arginina N-Metiltransferases/metabolismo
18.
PLoS One ; 15(4): e0231877, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315352

RESUMO

Alterations in fibroblast growth factor receptor (FGFR) genes have been identified as potential driver oncogenes. Pharmacological targeting of FGFRs may therefore provide therapeutic benefit to selected cancer patients, and proof-of-concept has been established in early clinical trials of FGFR inhibitors. Here, we present the molecular structure and preclinical characterization of INCB054828 (pemigatinib), a novel, selective inhibitor of FGFR 1, 2, and 3, currently in phase 2 clinical trials. INCB054828 pharmacokinetics and pharmacodynamics were investigated using cell lines and tumor models, and the antitumor effect of oral INCB054828 was investigated using xenograft tumor models with genetic alterations in FGFR1, 2, or 3. Enzymatic assays with recombinant human FGFR kinases showed potent inhibition of FGFR1, 2, and 3 by INCB054828 (half maximal inhibitory concentration [IC50] 0.4, 0.5, and 1.0 nM, respectively) with weaker activity against FGFR4 (IC50 30 nM). INCB054828 selectively inhibited growth of tumor cell lines with activation of FGFR signaling compared with cell lines lacking FGFR aberrations. The preclinical pharmacokinetic profile suggests target inhibition is achievable by INCB054828 in vivo with low oral doses. INCB054828 suppressed the growth of xenografted tumor models with FGFR1, 2, or 3 alterations as monotherapy, and the combination of INCB054828 with cisplatin provided significant benefit over either single agent, with an acceptable tolerability. The preclinical data presented for INCB054828, together with preliminary clinical observations, support continued investigation in patients with FGFR alterations, such as fusions and activating mutations.


Assuntos
Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Administração Oral , Animais , Linhagem Celular Tumoral , Feminino , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Camundongos SCID , Morfolinas/química , Morfolinas/farmacocinética , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Pirróis/química , Pirróis/farmacocinética , Ratos , Ratos Nus , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Pharmacol Exp Ther ; 374(1): 211-222, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32345620

RESUMO

The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.


Assuntos
Fígado/efeitos dos fármacos , Linfoma/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/efeitos adversos , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirazóis/efeitos adversos , Pirazóis/farmacologia , Pirimidinas/efeitos adversos , Pirimidinas/farmacologia , Pirrolidinas/efeitos adversos , Pirrolidinas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/farmacologia , Camundongos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Sci Transl Med ; 12(534)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161105

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer that does not respond to endocrine therapy or human epidermal growth factor receptor 2 (HER2)-targeted therapies. Individuals with TNBC experience higher rates of relapse and shorter overall survival compared to patients with receptor-positive breast cancer subtypes. Preclinical discoveries are needed to identify, develop, and advance new drug targets to improve outcomes for patients with TNBC. Here, we report that MYCN, an oncogene typically overexpressed in tumors of the nervous system or with neuroendocrine features, is heterogeneously expressed within a substantial fraction of primary and recurrent TNBC and is expressed in an even higher fraction of TNBCs that do not display a pathological complete response after neoadjuvant chemotherapy. We performed high-throughput chemical screens on TNBC cell lines with varying amounts of MYCN expression and determined that cells with higher expression of MYCN were more sensitive to bromodomain and extraterminal motif (BET) inhibitors. Combined BET and MEK inhibition resulted in a synergistic decrease in viability, both in vitro and in vivo, using cell lines and patient-derived xenograft (PDX) models. Our preclinical data provide a rationale to advance a combination of BET and MEK inhibitors to clinical investigation for patients with advanced MYCN-expressing TNBC.


Assuntos
Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Proteínas/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Recidiva Local de Neoplasia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA