Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Mol Plant Microbe Interact ; 33(3): 553-560, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31790345

RESUMO

Deoxynivalenol (DON) is a mycotoxin virulence factor that promotes growth of the Fusarium graminearum fungus in wheat floral tissues. To further our understanding of the effects of DON exposure on plant cell function, we characterized DON-induced transcriptional changes in wheat spikelets. Four hundred wheat genes were differentially expressed during infection with wild-type F. graminearum as compared with a Δtri5 mutant strain that is unable to produce DON. Most of these genes were more induced by the DON-producing strain and included genes involved in secondary metabolism, signaling, transport, and stress responses. DON induction was confirmed for a subset of the genes, including TaNFXL1, by treating tissues with DON directly. Previous work indicates that the NFXL1 ortholog represses trichothecene-induced defense responses and bacterial resistance in Arabidopsis, but the role of the NFXL family has not been studied in wheat. We observed greater DON-induced TaNFXL1 gene expression in a susceptible wheat genotype relative to the F. graminearum-resistant genotype Wuhan 1. Functional testing using both virus-induced gene silencing and CRISPR-mediated genome editing indicated that TaNFXL1 represses F. graminearum resistance. Together, this suggests that targeting the TaNFXL1 gene may help to develop disease resistance in cultivated wheat.


Assuntos
Resistência à Doença/genética , Fusarium/patogenicidade , Edição de Genes , Doenças das Plantas/genética , Fatores de Transcrição/genética , Triticum/genética , Inativação Gênica , Doenças das Plantas/microbiologia , Tricotecenos , Triticum/microbiologia
2.
Plant Methods ; 15: 119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31673276

RESUMO

BACKGROUND: Targeted genome editing using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system has been applied in a large number of plant species. Using a gene-specific single guide RNA (sgRNA) and the CRISPR/Cas9 system, small editing events such as deletions of few bases can be obtained. However larger deletions are required for some applications. In addition, identification and characterization of edited events can be challenging in plants with complex genomes, such as wheat. RESULTS: In this study, we used the CRISPR/Cas9 system and developed a protocol that yielded high number of large deletions employing a pair of co-expressed sgRNA to target the same gene. The protocol was validated by targeting three genes, TaABCC6, TaNFXL1 and TansLTP9.4 in a wheat protoplast assay. Deletions of sequences located between the two sgRNA in each gene were the most frequent editing events observed for two of the three genes. A comparative assessment of editing frequencies between a codon-optimized Cas9 for expression in algae, crCas9, and a plant codon-optimized Cas9, pcoCas9, showed more consistent results with the vector expressing pcoCas9. Editing of TaNFXL1 by co-expression of sgRNA pair was investigated in transgenic wheat plants. Given the ploidy of bread wheat, a rapid, robust and inexpensive genotyping protocol was also adapted for hexaploid genomes and shown to be a useful tool to identify homoeolog-specific editing events in wheat. CONCLUSIONS: Co-expressed pairs of sgRNA targeting single genes in conjunction with the CRISPR/Cas9 system produced large deletions in wheat. In addition, a genotyping protocol to identify editing events in homoeologs of TaNFXL1 was successfully adapted.

3.
mBio ; 10(3)2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186319

RESUMO

Antofine, a phenanthroindolizidine alkaloid, is a bioactive natural product isolated from milkweeds that exhibits numerous biological activities, including anticancer, antimicrobial, antiviral, and anti-inflammatory properties. However, the direct targets and mode of action of antofine have not been determined. In this report, we show that antofine displays antifungal properties against the phytopathogen Fusarium graminearum, the cause of Fusarium head blight disease (FHB). FHB does devastating damage to agriculture, causing billions of dollars in economic losses annually. We therefore sought to understand the mode of action of antofine in F. graminearum using insights from yeast chemical genomic screens. We used haploinsufficiency profiling (HIP) to identify putative targets of antofine in yeast and identified three candidate targets, two of which had homologs in F. graminearum The Fusarium homologues of two targets, glutamate dehydrogenase (FgGDH) and resistance to rapamycin deletion 2 (FgRRD2), can bind antofine. Of the two genes, only the Fgrrd2 knockout displayed a loss of virulence in wheat, indicating that RRD2 is an antivirulence target of antofine in F. graminearum Mechanistically, we demonstrate that antofine disrupts the interaction between FgRRD2 and FgTap42, which is part of the Tap42-phosphatase complex in the target of rapamycin (TOR) signaling pathway, a central regulator of cell growth in eukaryotes and a pathway of extensive study for controlling numerous pathologies.IMPORTANCEFusarium head blight caused by the fungal pathogen Fusarium graminearum is a devastating disease of cereal crops worldwide, with limited effective chemical treatments available. Here we show that the natural alkaloid compound antofine can inhibit fusarium head blight in wheat. Using yeast genomic screening, we identified the TOR pathway component RRD2 as a target of antofine that is also required for F. graminearum pathogenicity.


Assuntos
Fusarium/efeitos dos fármacos , Fusarium/genética , Indóis/farmacologia , Fenantrolinas/farmacologia , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Triticum/microbiologia , Fungicidas Industriais/farmacologia , Genômica , Doenças das Plantas/microbiologia , Virulência/genética
5.
Transgenic Res ; 23(3): 455-67, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24435987

RESUMO

To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and ß-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.


Assuntos
Antígenos de Plantas/genética , Globulinas/genética , Glycine max/genética , Plantas Geneticamente Modificadas , Proteínas de Armazenamento de Sementes/genética , Sementes/genética , Proteínas de Soja/genética , Aminoácidos/genética , Aminoácidos/metabolismo , Bactérias/genética , Códon , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Regiões Promotoras Genéticas , Sementes/crescimento & desenvolvimento , Glycine max/crescimento & desenvolvimento
6.
Plant Physiol ; 158(1): 200-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22086422

RESUMO

Highbush blueberry (Vaccinium corymbosum) fruits contain substantial quantities of flavonoids, which are implicated in a wide range of health benefits. Although the flavonoid constituents of ripe blueberries are known, the molecular genetics underlying their biosynthesis, localization, and changes that occur during development have not been investigated. Two expressed sequence tag libraries from ripening blueberry fruit were constructed as a resource for gene identification and quantitative real-time reverse transcription-polymerase chain reaction primer design. Gene expression profiling by quantitative real-time reverse transcription-polymerase chain reaction showed that flavonoid biosynthetic transcript abundance followed a tightly regulated biphasic pattern, and transcript profiles were consistent with the abundance of the three major classes of flavonoids. Proanthocyanidins (PAs) and corresponding biosynthetic transcripts encoding anthocyanidin reductase and leucoanthocyanidin reductase were most concentrated in young fruit and localized predominantly to the inner fruit tissue containing the seeds and placentae. Mean PA polymer length was seven to 8.5 subunits, linked predominantly via B-type linkages, and was relatively constant throughout development. Flavonol accumulation and localization patterns were similar to those of the PAs, and the B-ring hydroxylation pattern of both was correlated with flavonoid-3'-hydroxylase transcript abundance. By contrast, anthocyanins accumulated late in maturation, which coincided with a peak in flavonoid-3-O-glycosyltransferase and flavonoid-3'5'-hydroxylase transcripts. Transcripts of VcMYBPA1, which likely encodes an R2R3-MYB transcriptional regulator of PA synthesis, were prominent in both phases of development. Furthermore, the initiation of ripening was accompanied by a substantial rise in abscisic acid, a growth regulator that may be an important component of the ripening process and contribute to the regulation of blueberry flavonoid biosynthesis.


Assuntos
Ácido Abscísico/metabolismo , Mirtilos Azuis (Planta)/genética , Mirtilos Azuis (Planta)/metabolismo , Flavonoides/metabolismo , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Sequência de Bases , Mirtilos Azuis (Planta)/crescimento & desenvolvimento , Sistema Enzimático do Citocromo P-450 , Citocininas/metabolismo , Etiquetas de Sequências Expressas , Flavonoides/genética , Flavonóis/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Ácidos Indolacéticos/metabolismo , Dados de Sequência Molecular , Proantocianidinas/genética , Proantocianidinas/metabolismo , Regiões Promotoras Genéticas
7.
Protein Expr Purif ; 67(1): 15-22, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19364534

RESUMO

Late embryogenesis abundant (LEA) proteins are intrinsically disordered proteins that accumulate in organisms during the development of dehydration stress tolerance and cold acclimation. Group 3 LEA proteins have been implicated in the prevention of cellular protein denaturation and membrane damage during desiccation and anhydrobiosis. We tested the ability of LEA proteins to facilitate recombinant expression of recalcitrant and intrinsic membrane proteins. Two Brassica napus Group 3 LEA proteins, BN115m and a truncated fragment of BNECP63, were fused to two target proteins identified as recalcitrant to overexpression in soluble form or outside of inclusion bodies. Fusion of a truncated peptide of BNECP63 is sufficient to provide soluble and high levels of recombinant overexpression of BNPsbS (an intrinsic membrane chlorophyll-binding protein of photosystem II light harvesting complex) and a peptide of the Hepatitis C viral polyprotein. Furthermore, fusion of the recombinant target proteins to BNECP63 or BN115 prevented irreversible heat- and freeze-induced precipitation. These experiments not only underscore the exploitation of LEA-type peptides in facilitating protein overexpression and protection, but also provide insights into the mechanism of LEA proteins in cellular protection.


Assuntos
Escherichia coli/genética , Complexos de Proteínas Captadores de Luz/biossíntese , Proteínas de Plantas/metabolismo , Proteínas do Core Viral/biossíntese , Brassica napus/genética , Cromatografia Líquida , Complexos de Proteínas Captadores de Luz/genética , Proteínas de Plantas/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Solubilidade , Proteínas do Core Viral/genética
8.
J Biomol Tech ; 16(3): 239-47, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16461948

RESUMO

We evaluated the effect of the T4 bacteriophage gene 32 protein (T4gp32) on in vitro transcription and reverse transcription. T4gp32 doubled the yield of in vitro transcripts obtained with T7 RNA polymerase and increased the yield of cDNA synthesis when used in combination with an RNaseH-deficient Moloney murine leukemia virus [Au: ok] reverse transcriptase. The positive effect could be correlated with the RNA chaperone activity of T4gp32. T4gp32 stimulated the synthesis of long cDNAs, particularly species longer than 7 kb. By comparison, thermal activation of reverse transcriptase with trehalose only boosted the production of shorter cDNAs. For the construction of an Arabidopsis thaliana cDNA library, where the average cDNA size is 1.2 kbp, both the presence of T4gp32 under standard reaction conditions as well as thermal activation resulted in similarly high percentages of full-length cDNA. However, the inclusion of T4gp32 in a standard reverse transcription reaction resulted in the highest cDNA yield. We conclude that the addition of T4gp32 in standard reverse transcription reactions can increase the quality and yield of full-length cDNA libraries.


Assuntos
DNA Complementar/biossíntese , Proteínas de Ligação a DNA/fisiologia , Transcrição Gênica , Proteínas Virais/fisiologia , Sequência de Bases , Primers do DNA , DNA Polimerase Dirigida por RNA/metabolismo
9.
Proc Natl Acad Sci U S A ; 100(11): 6855-9, 2003 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-12740441

RESUMO

We have developed a repressible seed-lethal (SL) system aimed at reducing the probability of transgene introgression into a population of sexually compatible plants. To evaluate the potential of this method, tobacco plants were transformed with an SL construct comprising gene 1 and gene 2 from Agrobacterium tumefaciens whereby gene 1 was controlled by the seed-specific phaseolin promoter modified to contain a binding site for the Escherichia coli TET repressor (R). The expression of this construct allows normal plant and seed development but inhibits seed germination. Plants containing the SL construct were crossed with plants containing the tet R gene to derive plant lines where the expression of the SL construct is repressed. Plant lines that contained both constructs allowed normal seed formation and germination, whereas seeds in which the SL construct was separated from the R gene through segregation did not germinate. The requirements of such a method to efficiently control the flow of novel traits among sexually compatible plants are discussed.


Assuntos
Germinação , Plantas Geneticamente Modificadas/embriologia , Agrobacterium tumefaciens/genética , Sequência de Bases , Primers do DNA , Genótipo , Fenótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase , Transformação Genética
11.
Insect Biochem Mol Biol ; 32(3): 255-63, 2002 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-11804797

RESUMO

A novel DNase from the digestive tract of the spruce budworm (Choristoneura fumiferana) has been isolated and characterized. This DNase has two features that distinguish it from other known DNases: (1) it has a pH optimum of 10.5 to 11; (2) it plays an important role in the conversion of the insecticidal crystal protein from Bacillus thuringiensis to the active DNA-free toxin in the larval gut. Only one digestive DNase with an apparent molecular mass of 23 kDa was found and no associated carbohydrate was detected. It has some similarities to pancreatic DNase I in that divalent alkaline metal ion is required for activity and it is inhibited by monovalent cations. In particular, Mg(2+) and Ca(2+) were the most effective activators. Transition metal ions also activated the enzyme but were less effective. The enzyme is an endonuclease that hydrolyzes single and double stranded DNA but shows a higher specificity for single stranded DNA. The purified enzyme acted synergistically with proteases on crystals from Bacillus thuringiensis to yield the DNA-free toxin. To our knowledge, this is the first characterization of DNase activity in insect larvae and provides strong evidence that a DNase is an integral component of the larval digestive system.


Assuntos
Toxinas Bacterianas , Desoxirribonucleases/metabolismo , Mariposas/enzimologia , Álcalis , Animais , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/metabolismo , Cátions Bivalentes , Cátions Monovalentes , DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxirribonucleases/isolamento & purificação , Sistema Digestório/enzimologia , Endotoxinas/metabolismo , Ativação Enzimática , Proteínas Hemolisinas , Concentração de Íons de Hidrogênio , Hidrólise , Magnésio , Potássio , RNA/metabolismo , Sódio , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA