Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 22(1): 346, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174827

RESUMO

BACKGROUND: Recent advances in 3D imaging technologies provide novel insights to researchers and reveal finer and more detail of examined specimen, especially in the biomedical domain, but also impose huge challenges regarding scalability for automated analysis algorithms due to rapidly increasing dataset sizes. In particular, existing research towards automated vessel network analysis does not always consider memory requirements of proposed algorithms and often generates a large number of spurious branches for structures consisting of many voxels. Additionally, very often these algorithms have further restrictions such as the limitation to tree topologies or relying on the properties of specific image modalities. RESULTS: We propose a scalable iterative pipeline (in terms of computational cost, required main memory and robustness) that extracts an annotated abstract graph representation from the foreground segmentation of vessel networks of arbitrary topology and vessel shape. The novel iterative refinement process is controlled by a single, dimensionless, a-priori determinable parameter. CONCLUSIONS: We are able to, for the first time, analyze the topology of volumes of roughly 1 TB on commodity hardware, using the proposed pipeline. We demonstrate improved robustness in terms of surface noise, vessel shape deviation and anisotropic resolution compared to the state of the art. An implementation of the presented pipeline is publicly available in version 5.1 of the volume rendering and processing engine Voreen.


Assuntos
Algoritmos , Imageamento Tridimensional , Anisotropia , Processamento de Imagem Assistida por Computador
2.
Methods Mol Biol ; 1846: 1-18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30242749

RESUMO

Like the circulatory blood vessel system, the dendriform lymphatic vascular system forms a disseminated organ that is virtually indispensible for the function of most other organs. Formation and maintenance of the correct topology are essential for lymph vessel physiology and hence analysis of its three-dimensional architecture provides crucial functional information.Here we describe protocols for whole-mount immunostaining of the vessel systems in various mouse tissues, mouse fetuses, and human skin biopsies. The resulting samples are suited after flat mounting for confocal microscopy or after optical tissue clearing for light sheet microscopy. Both microscopic modalities use optical sectioning to generate image stacks from which the three-dimensional vessel structure can be digitally reconstructed. We introduce the open software package Voreen, developed at the University of Münster. Voreen has been adapted and extended for the interactive visualization of large multichannel image stacks on commodity hardware, allowing for a faithful digital representation of the spatial structure of the vessel systems in whole-mount stained tissue samples.


Assuntos
Angiografia , Imageamento Tridimensional , Vasos Linfáticos/diagnóstico por imagem , Angiografia/métodos , Animais , Biópsia , Feminino , Humanos , Imageamento Tridimensional/métodos , Camundongos , Microscopia , Gravidez , Pele/irrigação sanguínea
3.
Comput Biol Med ; 93: 189-199, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29324364

RESUMO

The importance of studying model organisms such as Drosophila melanogaster has significantly increased in recent biological research. Amongst others, Drosophila can be used to study heart development and heartbeat related diseases. Here we propose a method for automatic in vivo heartbeat detection of Drosophila melanogaster pupae based on morphological structures which are recorded without any dissection using FIM imaging. Our approach is easy-to-use, has low computational costs, and enables high-throughput experiments. After automatically segmenting the heart region of the pupa in an image sequence, the heartbeat is indirectly determined based on intensity variation analysis. We have evaluated our method using 47,631 manually annotated frames from 29 image sequences recorded with different temporal and spatial resolutions which are made publicly available. We show that our algorithm is both precise since it detects more than 95% of the heartbeats correctly as well as robust since the same standardized set of parameters can be used for all sequences. The combination of FIM imaging and our algorithm enables a reliable heartbeat detection of multiple Drosophila pupae while simultaneously avoiding any time consuming preparation of the animals.


Assuntos
Algoritmos , Coração/embriologia , Processamento de Imagem Assistida por Computador/métodos , Contração Miocárdica/fisiologia , Animais , Drosophila melanogaster , Pupa
4.
JCI Insight ; 2(16)2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28814672

RESUMO

BACKGROUND: Lack of investigatory and diagnostic tools has been a major contributing factor to the failure to mechanistically understand lymphedema and other lymphatic disorders in order to develop effective drug and surgical therapies. One difficulty has been understanding the true changes in lymph vessel pathology from standard 2D tissue sections. METHODS: VIPAR (volume information-based histopathological analysis by 3D reconstruction and data extraction), a light-sheet microscopy-based approach for the analysis of tissue biopsies, is based on digital reconstruction and visualization of microscopic image stacks. VIPAR allows semiautomated segmentation of the vasculature and subsequent nonbiased extraction of characteristic vessel shape and connectivity parameters. We applied VIPAR to analyze biopsies from healthy lymphedematous and lymphangiomatous skin. RESULTS: Digital 3D reconstruction provided a directly visually interpretable, comprehensive representation of the lymphatic and blood vessels in the analyzed tissue volumes. The most conspicuous features were disrupted lymphatic vessels in lymphedematous skin and a hyperplasia (4.36-fold lymphatic vessel volume increase) in the lymphangiomatous skin. Both abnormalities were detected by the connectivity analysis based on extracted vessel shape and structure data. The quantitative evaluation of extracted data revealed a significant reduction of lymphatic segment length (51.3% and 54.2%) and straightness (89.2% and 83.7%) for lymphedematous and lymphangiomatous skin, respectively. Blood vessel length was significantly increased in the lymphangiomatous sample (239.3%). CONCLUSION: VIPAR is a volume-based tissue reconstruction data extraction and analysis approach that successfully distinguished healthy from lymphedematous and lymphangiomatous skin. Its application is not limited to the vascular systems or skin. FUNDING: Max Planck Society, DFG (SFB 656), and Cells-in-Motion Cluster of Excellence EXC 1003.

5.
BMC Med Imaging ; 17(1): 36, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28549448

RESUMO

BACKGROUND: Cardiovascular diseases are the leading cause of death worldwide. A prominent cause of cardiovascular events is atherosclerosis, a chronic inflammation of the arterial wall that leads to the formation of so called atherosclerotic plaques. There is a strong clinical need to develop new, non-invasive vascular imaging techniques in order to identify high-risk plaques, which might escape detection using conventional methods based on the assessment of the luminal narrowing. In this context, molecular imaging strategies based on fluorescent tracers and fluorescence reflectance imaging (FRI) seem well suited to assess molecular and cellular activity. However, such an analysis demands a precise and standardized analysis method, which is orientated on reproducible anatomical landmarks, ensuring to compare equivalent regions across different subjects. METHODS: We propose a novel method, Statistical Permutation-based Artery Mapping (SPAM). Our approach is especially useful for the understanding of complex and heterogeneous regional processes during the course of atherosclerosis. Our method involves three steps, which are (I) standardisation with an additional intensity normalization, (II) permutation testing, and (III) cluster-enhancement. Although permutation testing and cluster enhancement are already well-established in functional magnetic resonance imaging, to the best of our knowledge these strategies have so far not been applied in cardiovascular molecular imaging. RESULTS: We tested our method using FRI images of murine aortic vessels in order to find recurring patterns in atherosclerotic plaques across multiple subjects. We demonstrate that our pixel-wise and cluster-enhanced testing approach is feasible and useful to analyse tracer distributions in FRI data sets of aortic vessels. CONCLUSIONS: We expect our method to be a useful tool within the field of molecular imaging of atherosclerotic plaques since cluster-enhanced permutation testing is a powerful approach for finding significant differences of tracer distributions in inflamed atherosclerotic vessels.


Assuntos
Aorta/diagnóstico por imagem , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Aterosclerose/diagnóstico por imagem , Humanos , Camundongos , Modelos Animais , Modelos Estatísticos , Imagem Molecular/veterinária , Imagem Óptica/veterinária
6.
IEEE Comput Graph Appl ; 37(2): 80-89, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28320645

RESUMO

The winning entry of the 2015 IEEE Scientific Visualization Contest, this article describes a visualization tool for cosmological data resulting from dark-matter simulations. The proposed system helps users explore all aspects of the data at once and receive more detailed information about structures of interest at any time. Moreover, novel methods for visualizing and interactively exploring dark-matter halo substructures are proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA