Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Prev Alzheimers Dis ; 7(2): 104-111, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32236399

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common and most costly chronic neurodegenerative disease globally. AD develops over an extended period prior to cognitive symptoms, leaving a "window of opportunity" for targeted risk-reduction interventions. Further, this pre-dementia phase includes early physiological changes in sleep and autonomic regulation, for which wearable biosensor devices may offer a convenient and cost-effective method to assess AD-risk. METHODS: Patients with a family history of AD and no or minimal cognitive complaints were recruited from the Alzheimer's Prevention Clinic at Weill Cornell Medicine and New York-Presbyterian. Of the 40 consecutive patients screened, 34 (85%) agreed to wear a wearable biosensor device (WHOOP). One subject (2.5%) lost the device prior to data collection. Of the remaining subjects, 24 were classified as normal cognition and were asymptomatic, 6 were classified as subjective cognitive decline, and 3 were amyloid-positive (one with pre-clinical AD, one with pre-clinical Lewy-Body Dementia, and one with mild cognitive impairment due to AD). Sleep-cycle, autonomic (heart rate variability [HRV]) and activity measures were collected via WHOOP. Blood biomarkers and neuropsychological testing sensitive to cognitive changes in pre-clinical AD were obtained. Participants completed surveys assessing their sleep-patterns, exercise habits, and attitudes towards WHOOP. The goal of this prospective observational study was to determine the feasibility of using a wrist-worn biosensor device in patients at-risk for AD dementia. Unsupervised machine learning was performed to first separate participants into distinct phenotypic groups using the multivariate biometric data. Additional statistical analyses were conducted to examine correlations between individual biometric measures and cognitive performance. RESULTS: 27 (81.8%) participants completed the follow-up surveys. Twenty-four participants (88.9%) were satisfied with WHOOP after six months, and twenty-three (85.2%) wanted to continue wearing WHOOP. K-means clustering separated participants into two groups. Group 1 was older, had lower HRV, and spent more time in slow-wave sleep (SWS) than Group 2. Group 1 performed better on two cognitive tests assessing executive function: Flanker Inhibitory Attention/Control (FIAC) (p=.031), and Dimensional Change Card Sort (DCCS) (p=.061). In Group 1, DCCS was correlated with SWS (ρ=.68, p=0.024) and HRV (ρ=.6, p=0.019). In Group 2, DCCS was correlated with HRV (ρ=.55, p=0.018). There were no significant differences in blood biomarkers between the two groups. CONCLUSIONS: Wearable biosensor devices may be a feasible tool to assess AD-related physiological changes. Longitudinal collection of sleep and HRV data may potentially be a non-invasive method for monitoring cognitive changes related to pre-clinical AD. Further study is warranted in larger populations.


Assuntos
Actigrafia/instrumentação , Doença de Alzheimer/prevenção & controle , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Estudos de Viabilidade , Feminino , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Sono , Inquéritos e Questionários
2.
J Prev Alzheimers Dis ; 5(4): 225-230, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298180

RESUMO

Along with advanced age and apolipoprotein E (APOE)-4 genotype, female sex is a major risk factor for developing late-onset Alzheimer's disease (AD). Considering that AD pathology begins decades prior to clinical symptoms, the higher risk in women cannot simply be accounted for by their greater longevity as compared to men. Recent investigation into sex-specific pathophysiological mechanisms behind AD risk has implicated the menopause transition (MT), a midlife neuroendocrine transition state unique to females. Commonly characterized as ending in reproductive senescence, many symptoms of MT are neurological, including disruption of estrogen-regulated systems such as thermoregulation, sleep, and circadian rhythms, as well as depression and impairment in multiple cognitive domains. Preclinical studies have shown that, during MT, the estrogen network uncouples from the brain bioenergetic system. The resulting hypometabolic state could serve as the substrate for neurological dysfunction. Indeed, translational brain imaging studies demonstrate that 40-60 year-old perimenopausal and postmenopausal women exhibit an AD-endophenotype characterized by decreased metabolic activity and increased brain amyloid-beta deposition as compared to premenopausal women and to age-matched men. This review discusses the MT as a window of opportunity for therapeutic interventions to compensate for brain bioenergetic crisis and combat the subsequent increased risk for AD in women.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiopatologia , Menopausa , Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Feminino , Terapia de Reposição Hormonal , Humanos , Fatores de Risco
3.
J Prev Alzheimers Dis ; 5(4): 245-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30298183

RESUMO

Population-attributable risk models estimate that up to one-third of Alzheimer's disease (AD) cases may be preventable through risk factor modification. The field of AD prevention has largely focused on addressing these factors through universal risk reduction strategies for the general population. However, targeting these strategies in a clinical precision medicine fashion, including the use of genetic risk factors, allows for potentially greater impact on AD risk reduction. Apolipoprotein E (APOE), and specifically the APOE ε4 variant, is one of the most well-established genetic influencers on late-onset AD risk. In this review, we evaluate the impact of APOE ε4 carrier status on AD prevention interventions, including lifestyle, nutrigenomic, pharmacogenomic, AD comorbidities, and other biological and behavioral considerations. Using a clinical precision medicine strategy that incorporates APOE ε4 carrier status may provide a highly targeted and distinct approach to AD prevention with greater potential for success.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/prevenção & controle , Apolipoproteínas E/genética , Predisposição Genética para Doença , Apolipoproteína E4/genética , Genótipo , Humanos , Estilo de Vida , Medicina de Precisão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA