Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 450(7169): 541-4, 2007 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-18033295

RESUMO

Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.

2.
Plant Cell ; 10(12): 2087-101, 1998 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-9836747

RESUMO

A 3600-bp RNA-directed RNA polymerase (RdRP)-specific cDNA comprising an open reading frame (ORF) of 1114 amino acids was isolated from tomato. The putative protein encoded by this ORF does not share homology with any characterized proteins. Antibodies that were raised against synthetic peptides whose sequences have been deduced from the ORF were shown to specifically detect the 127-kD tomato RdRP protein. The immunoresponse to the antibodies correlated with the enzymatic activity profile of the RdRP after chromatography on Q-, poly(A)-, and poly(U)-Sepharose, hydroxyapatite, and Sephadex G-200 columns. DNA gel blot analysis revealed a single copy of the RdRP gene in tomato. RdRP homologs from petunia, Arabidopsis, tobacco, and wheat were identified by using polymerase chain reaction. A sequence comparison indicated that sequences homologous to RdRP are also present in the yeast Schizosaccharomyces pombe and in the nematode Caenorhabditis elegans. The previously described induction of RdRP activity upon viroid infection is shown to be correlated with an increased steady state level of the corresponding mRNA. The possible involvement of this heretofore functionally elusive plant RNA polymerase in homology-dependent gene silencing is discussed.


Assuntos
DNA Complementar/genética , DNA de Plantas/genética , RNA Polimerase Dependente de RNA/genética , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sequência de Aminoácidos , Animais , Anticorpos , Sequência de Bases , Clonagem Molecular , Primers do DNA/genética , DNA Complementar/isolamento & purificação , DNA de Plantas/isolamento & purificação , Genes de Plantas , Solanum lycopersicum/virologia , Dados de Sequência Molecular , RNA Polimerase Dependente de RNA/imunologia , Coelhos , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Viroides/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA