Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Bioanal Chem ; 411(6): 1253-1260, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30617405

RESUMO

Phosphorus (P) research still lacks techniques for rapid imaging of P use and allocation in different soil, sediment, and biological systems in a quantitative manner. In this study, we describe a time-saving and cost-efficient digital autoradiographic method for in situ quantitative imaging of 33P radioisotopes in plant materials. Our method combines autoradiography of the radiotracer applications with additions of commercially available 14C polymer references to obtain 33P activities in a quantitative manner up to 2000 Bq cm-2. Our data show that linear standard regressions for both radioisotopes are obtained, allowing the establishment of photostimulated luminescence equivalence between both radioisotopes with a factor of 9.73. Validating experiments revealed a good agreement between the calculated and applied 33P activity (R2 = 0.96). This finding was also valid for the co-exposure of 14C polymer references and 33P radioisotope specific activities in excised plant leaves for both maize (R2 = 0.99) and wheat (R2 = 0.99). The outlined autoradiographic quantification procedure retrieved 100% ± 12% of the 33P activity in the plant leaves, irrespective of plant tissue density. The simplicity of this methodology opens up new perspectives for fast quantitative imaging of 33P in biological systems and likely, thus, also for other environmental compartments.


Assuntos
Ácidos Fosfóricos/análise , Radioisótopos de Fósforo/análise , Folhas de Planta/química , Triticum/química , Zea mays/química , Autorradiografia/métodos , Radioisótopos de Carbono/análise , Fósforo/análise , Polímeros/análise
2.
J Environ Qual ; 43(3): 964-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-25602825

RESUMO

As a consequence of population growth and urbanization, arable fields are increasingly irrigated with wastewater, but the related environmental and health risks (e.g., pollution with antibiotics) are poorly understood. We performed batch sorption experiments with sulfamethoxazole (SMX) and ciprofloxacin (CIP) and soils that had been irrigated with untreated wastewater for 0, 14, 35, and 100 yr. Sorption of CIP was always strong and largely irreversible irrespective of the duration of wastewater irrigation and the content and quality of soil organic matter (SOM) (Freundlich sorption coefficient, : 346-979 mg L kg; 1/: 0.62-0.76) but decreased with increasing soil pH due to a decreasing fraction of the cationic species. Sorption of SMX and sorption hysteresis were stronger in the nonirrigated soil (: 4.14 mg L kg ± 0.02; 1/: 0.69 ± 0.02) than in the irrigated soils (: 0.65-1.38 mg L kg; 1/: 0.68-0.75). Irrigation (e.g., competition with SMX accumulated in soil or with other organic compounds contained in wastewater) and SOM quality (i.e., increase of carboxylic moieties with increasing time of irrigation) had a stronger effect on SMX sorption and its hysteresis than soil organic carbon content. Whereas sorption of SMX can be reduced by long-term irrigation with wastewater, sorption of CIP is intense also after prolonged irrigation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA