Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Oecologia ; 200(1-2): 183-197, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36152059

RESUMO

Soil hydrology, nutrient availability, and forest disturbance determine the variation of tropical tree species composition locally. However, most habitat filtering is explained by tree species' hydraulic traits along the hydrological gradient. We asked whether these patterns apply to lianas. At the community level, we investigated whether hydrological gradient, soil fertility, and forest disturbance explain liana species composition and whether liana species-environment relationships are mediated by leaf and stem wood functional traits. We sampled liana species composition in 18 1-ha plots across a 64 km2 landscape in Central Amazonia and measured eleven leaf and stem wood traits across 115 liana species in 2000 individuals. We correlated liana species composition, summarized using PCoA with the functional composition summarized using principal coordinate analysis (PCA), employing species mean values of traits at the plot level. We tested the relationship between ordination axes and environmental gradients. Liana species composition was highly correlated with functional composition. Taxonomic (PCoA) and functional (PCA) compositions were strongly associated with the hydrological gradient, with a slight influence from forest disturbance on functional composition. Species in valley areas had larger stomata size and higher proportions of self-supporting xylem than in plateaus. Liana species on plateaus invest more in fast-growing leaves (higher SLA), although they show a higher wood density. Our study reveals that lianas use different functional solutions in dealing with each end of the hydrological gradient and that the relationships among habitat preferences and traits explain lianas species distributions less directly than previously found in trees.


Assuntos
Hidrologia , Árvores , Florestas , Humanos , Solo , Clima Tropical , Xilema
2.
Plant Biol (Stuttg) ; 24(5): 721-733, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35357064

RESUMO

Volatile isoprenoids regulate plant performance and atmospheric processes, and Amazon forests comprise the dominant source to the global atmosphere. Still, there is a poor understanding of how isoprenoid emission capacities vary in response to ecophysiological and environmental controls in Amazonian ecosystems. We measured isoprenoid emission capacities of three Amazonian hyperdominant tree species - Protium hebetatum, Eschweilera grandiflora, Eschweilera coriacea - across seasons and along a topographic and edaphic environmental gradient in the central Amazon. From wet to dry season, both photosynthesis and isoprene emission capacities strongly declined, while emissions increased among the heavier isoprenoids: monoterpenes and sesquiterpenes. Plasticity across habitats was most evident in P. hebetatum, which emitted sesquiterpenes only in the dry season, at rates that significantly increased along the hydro-topographic gradient from white sands (shallow root water access) to uplands (deep water table). We suggest that emission composition shifts are part of a plastic response to increasing abiotic stress (e.g. heat and drought) and reduced photosynthetic supply of substrates for isoprenoid synthesis. Our comprehensive measurements suggest that more emphasis should be placed on other isoprenoids, besides isoprene, in the context of abiotic stress responses. Shifting emission compositions have implications for atmospheric responses because of the strong variation in reactivity among isoprenoid compounds.


Assuntos
Terpenos , Árvores , Ecossistema , Florestas , Estações do Ano
3.
Science ; 355(6328): 925-931, 2017 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-28254935

RESUMO

The extent to which pre-Columbian societies altered Amazonian landscapes is hotly debated. We performed a basin-wide analysis of pre-Columbian impacts on Amazonian forests by overlaying known archaeological sites in Amazonia with the distributions and abundances of 85 woody species domesticated by pre-Columbian peoples. Domesticated species are five times more likely than nondomesticated species to be hyperdominant. Across the basin, the relative abundance and richness of domesticated species increase in forests on and around archaeological sites. In southwestern and eastern Amazonia, distance to archaeological sites strongly influences the relative abundance and richness of domesticated species. Our analyses indicate that modern tree communities in Amazonia are structured to an important extent by a long history of plant domestication by Amazonian peoples.


Assuntos
Domesticação , Florestas , Árvores , Brasil , História Antiga , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA