Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nat Commun ; 15(1): 3785, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710674

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Assuntos
Domínio Catalítico , Isocitrato Desidrogenase , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Cinética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia
2.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464189

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

3.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260668

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

4.
Sci Rep ; 12(1): 3580, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246545

RESUMO

Ocean waves transfer sea spray aerosol (SSA) to the atmosphere, and these SSA particles can be enriched in organic matter relative to salts compared to seawater ratios. A fundamental understanding of the factors controlling the transfer of biogenic organic matter from the ocean to the atmosphere remains elusive. Field studies that focus on understanding the connection between organic species in seawater and SSA are complicated by the numerous processes and sources affecting the composition of aerosols in the marine environment. Here, an isolated ocean-atmosphere system enables direct measurements of the sea-air transfer of different classes of biogenic organic matter over the course of two phytoplankton blooms. By measuring excitation-emission matrices of bulk seawater, the sea surface microlayer, and SSA, we investigate time series of the transfer of fluorescent species including chlorophyll-a, protein-like substances, and humic-like substances. Herein, we show the emergence of different molecular classes in SSA at specific times over the course of a phytoplankton bloom, suggesting that SSA chemical composition changes over time in response to changing ocean biological conditions. We compare the temporal behaviors for the transfer of each component, and discuss the factors contributing to differences in transfer between phases.


Assuntos
Partículas e Gotas Aerossolizadas , Água do Mar , Aerossóis/química , Atmosfera/química , Fitoplâncton , Água do Mar/química
5.
J Phys Chem Lett ; 12(20): 5023-5029, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34024101

RESUMO

Lipopolysaccharides (LPS) in sea spray aerosol (SSA) particles have recently been shown to undergo heterogeneous reactions with HNO3 in the atmosphere. Here, we integrate theory and experiment to further investigate how the most abundant sea salt cations, Na+, Mg2+, and Ca2+, impact HNO3 reactions with LPS-containing SSA particles. Aerosol reaction flow tube studies show that heterogeneous reactions of SSA particles with divalent cation (Mg2+ and Ca2+) and LPS signatures were less reactive with HNO3 than those dominated by monovalent cations (Na+). All-atom molecular dynamics simulations of model LPS aggregates suggest that divalent cations cross-link the oligosaccharide chains to increase molecular aggregation and rigidity, which changes the particle phase and morphology, decreases water diffusion, and consequently decreases the reactive uptake of HNO3. This study provides new insight into how complex chemical interactions between ocean-derived salts and biogenic organic species can impact the heterogeneous reactivity of SSA particles.


Assuntos
Cálcio/química , Lipopolissacarídeos/química , Magnésio/química , Ácido Nítrico/química , Água do Mar/química , Sódio/química , Aerossóis/química , Cátions/química , Tamanho da Partícula , Sais/química , Propriedades de Superfície
6.
Biochem J ; 477(16): 2999-3018, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32729927

RESUMO

Isocitrate dehydrogenase 1 (IDH1) catalyzes the reversible NADP+-dependent conversion of isocitrate to α-ketoglutarate (αKG) to provide critical cytosolic substrates and drive NADPH-dependent reactions like lipid biosynthesis and glutathione regeneration. In biochemical studies, the forward reaction is studied at neutral pH, while the reverse reaction is typically characterized in more acidic buffers. This led us to question whether IDH1 catalysis is pH-regulated, which would have functional implications under conditions that alter cellular pH, like apoptosis, hypoxia, cancer, and neurodegenerative diseases. Here, we show evidence of catalytic regulation of IDH1 by pH, identifying a trend of increasing kcat values for αKG production upon increasing pH in the buffers we tested. To understand the molecular determinants of IDH1 pH sensitivity, we used the pHinder algorithm to identify buried ionizable residues predicted to have shifted pKa values. Such residues can serve as pH sensors, with changes in protonation states leading to conformational changes that regulate catalysis. We identified an acidic residue buried at the IDH1 dimer interface, D273, with a predicted pKa value upshifted into the physiological range. D273 point mutations had decreased catalytic efficiency and, importantly, loss of pH-regulated catalysis. Based on these findings, we conclude that IDH1 activity is regulated, at least in part, by pH. We show this regulation is mediated by at least one buried acidic residue ∼12 Å from the IDH1 active site. By establishing mechanisms of regulation of this well-conserved enzyme, we highlight catalytic features that may be susceptible to pH changes caused by cell stress and disease.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/metabolismo , Isocitratos/metabolismo , Mutação , Catálise , Domínio Catalítico , Glutaratos/química , Humanos , Concentração de Íons de Hidrogênio , Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Isocitratos/química , Cinética , Conformação Proteica , Especificidade por Substrato
7.
J Med Chem ; 63(5): 1929-1936, 2020 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-31913036

RESUMO

The topic of gender equality within the United States workforce is receiving a great deal of attention. The field of chemistry is no exception and is increasingly focused on taking steps to achieve gender diversity within the chemistry workforce. Over the past several years, many computational chemistry groups within large pharmaceutical companies have realized growth in the number of women, and here we discuss the key factors that we believe have played a role in attracting and retaining the authors of this review as computational chemists in pharma. Furthermore, we combine our professional experiences in the context of how computational methodology and technology have evolved over the past decades and how that evolution has facilitated the inclusion of more women into the field. Our hope is to be a part of a solution and provide insight that will allow the chemistry workforce to continue to make steps forward in attaining gender diversity in the workplace.


Assuntos
Descoberta de Drogas/tendências , Indústria Farmacêutica/tendências , Identidade de Gênero , Sexismo/tendências , Recursos Humanos/tendências , Feminino , Humanos , Estados Unidos
8.
Biochemistry ; 59(4): 479-490, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-31869219

RESUMO

Point mutations in human isocitrate dehydrogenase 1 (IDH1) can drive malignancies, including lower-grade gliomas and secondary glioblastomas, chondrosarcomas, and acute myeloid leukemias. These mutations, which usually affect residue R132, ablate the normal activity of catalyzing the NADP+-dependent oxidation of isocitrate to α-ketoglutarate (αKG) while also acquiring a neomorphic activity of reducing αKG to d-2-hydroxyglutarate (D2HG). Mutant IDH1 can be selectively therapeutically targeted due to structural differences that occur in the wild type (WT) versus mutant form of the enzyme, though the full mechanisms of this selectivity are still under investigation. Here we probe the mechanistic features of the neomorphic activity and selective small molecule inhibition through a new lens, employing WaterMap and molecular dynamics simulations. These tools identified a high-energy path of water molecules connecting the inhibitor binding site with the αKG and NADP+ binding sites in mutant IDH1. This water path aligns spatially with the α10 helix from WT IDH1 crystal structures. Mutating residues at the termini of this water path specifically disrupted inhibitor binding and/or D2HG production, revealing additional key residues to consider in optimizing druglike molecules against mutant IDH1. Taken together, our findings from molecular simulations and mutant enzyme kinetic assays provide insight into how disrupting water paths through enzyme active sites can impact not only inhibitor potency but also substrate recognition and activity.


Assuntos
Isocitrato Desidrogenase/química , Isocitrato Desidrogenase/genética , Sítios de Ligação/genética , Fenômenos Biofísicos , Catálise , Domínio Catalítico/genética , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitratos , Ácidos Cetoglutáricos/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação/genética , Água/química
9.
J Chem Theory Comput ; 15(10): 5703-5715, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31442033

RESUMO

Custom-designed ligand-binding proteins represent a promising class of macromolecules with exciting applications toward the design of new enzymes or the engineering of antibodies and small-molecule recruited proteins for therapeutic interventions. However, several challenges remain in designing a protein sequence such that the binding site organization results in high affinity interaction with a bound ligand. Here, we study the dynamics of explicitly solvated designed proteins through all-atom molecular dynamics (MD) simulations to gain insight into the causes that lead to the low affinity or instability of most of these designs, despite the prediction of their success by the computational design methodology. Simulations ranging from 500 to 1000 ns per replicate were conducted on 37 designed protein variants encompassing two distinct folds and a range of ligand affinities, resulting in more than 180 µs of combined sampling. The simulations provide retrospective insights into the properties affecting ligand affinity that can prove useful in guiding further steps of design optimization. Features indicate that entropic components are particularly important for affinity, which are not easily incorporated in the empirical models often used in design protocols. Additionally, we demonstrate that the application of machine learning approaches built upon the output from the simulations can help discriminate between successful and failed binders, such that MD could act as a screening step in protein design, resulting in a more efficient process.


Assuntos
Compostos de Benzil/química , Imidazolinas/química , Simulação de Dinâmica Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas da Gravidez/química , Sítios de Ligação , Humanos , Ligantes , Aprendizado de Máquina
10.
Langmuir ; 35(27): 9050-9060, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31188612

RESUMO

Lipases, as well as other enzymes, are present and active within the sea surface microlayer (SSML). Upon bubble bursting, lipases partition into sea spray aerosol (SSA) along with surface-active molecules such as lipids. Lipases are likely to be embedded in the lipid monolayer at the SSA surface and thus have the potential to influence SSA interfacial structure and chemistry. Elucidating the structure of the lipid monolayer at SSA interfaces and how this structure is altered upon interaction with a protein system like lipase is of interest, given the importance of how aerosols interact with sunlight, influence cloud formation, and provide surfaces for chemical reactions. Herein, we report an integrated experimental and computational study of Burkholderia cepacia lipase (BCL) embedded in a lipid monolayer and highlight the important role of electrostatic, rather than hydrophobic, interactions as a driver for monolayer stability. Specifically, we combine Langmuir film experiments and molecular dynamics (MD) simulations to examine the detailed interactions between the zwitterionic dipalmitoylphosphatidylcholine (DPPC) monolayer and BCL. Upon insertion of BCL from the underlying subphase into the lipid monolayer, it is shown that BCL permeates and largely disorders the monolayer while strongly interacting with zwitterionic DPPC molecules, as experimentally observed by Langmuir adsorption curves and infrared reflectance absorbance spectroscopy. Explicitly solvated, all-atom MD is then used to provide insights into inter- and intramolecular interactions that drive these observations, with specific attention to the formation of salt bridges or ionic-bonding interactions. We show that after insertion into the DPPC monolayer, lipase is maintained at high surface pressures and in large BCL concentrations by forming a salt-bridge-stabilized lipase-DPPC complex. In comparison, when embedded in an anionic monolayer at low surface pressures, BCL preferentially forms intramolecular salt bridges, reducing its total favorable interactions with the surfactant and partitioning out of the monolayer shortly after injection. Overall, this study shows that the structure and dynamics of lipase-embedded SSA surfaces vary based on surface charge and pressure and that these variations have the potential to differentially modulate the properties of marine aerosols.


Assuntos
Burkholderia cepacia/química , Lipase/química , Tensoativos/química , Adsorção , Aerossóis/química , Estabilidade Enzimática , Lipase/metabolismo , Estrutura Molecular , Tamanho da Partícula , Propriedades de Superfície
11.
Nucleic Acids Res ; 47(12): 6551-6567, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31114923

RESUMO

The universally conserved N6-threonylcarbamoyladenosine (t6A) modification of tRNA is essential for translational fidelity. In bacteria, t6A biosynthesis starts with the TsaC/TsaC2-catalyzed synthesis of the intermediate threonylcarbamoyl adenylate (TC-AMP), followed by transfer of the threonylcarbamoyl (TC) moiety to adenine-37 of tRNA by the TC-transfer complex comprised of TsaB, TsaD and TsaE subunits and possessing an ATPase activity required for multi-turnover of the t6A cycle. We report a 2.5-Å crystal structure of the T. maritima TC-transfer complex (TmTsaB2D2E2) bound to Mg2+-ATP in the ATPase site, and substrate analog carboxy-AMP in the TC-transfer site. Site directed mutagenesis results show that residues in the conserved Switch I and Switch II motifs of TsaE mediate the ATP hydrolysis-driven reactivation/reset step of the t6A cycle. Further, SAXS analysis of the TmTsaB2D2-tRNA complex in solution reveals bound tRNA lodged in the TsaE binding cavity, confirming our previous biochemical data. Based on the crystal structure and molecular docking of TC-AMP and adenine-37 in the TC-transfer site, we propose a model for the mechanism of TC transfer by this universal biosynthetic system.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/química , RNA de Transferência/metabolismo , Adenosina/biossíntese , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Modelos Moleculares , Mutagênese , Conformação Proteica , RNA de Transferência/química , Thermotoga maritima
12.
Biophys J ; 116(2): 205-214, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30606449

RESUMO

The atomic-level mechanisms that coordinate ligand release from protein pockets are only known for a handful of proteins. Here, we report results from accelerated molecular dynamics simulations for benzene dissociation from the buried cavity of the T4 lysozyme Leu99Ala mutant (L99A). In these simulations, benzene is released through a previously characterized, sparsely populated room-temperature excited state of the mutant, explaining the coincidence for experimentally measured benzene off rate and apo protein slow-timescale NMR relaxation rates between ground and excited states. The path observed for benzene egress is a multistep ligand migration from the buried cavity to ultimate release through an opening between the F/G-, H-, and I-helices and requires a number of cooperative multiresidue and secondary-structure rearrangements within the C-terminal domain of L99A. These rearrangements are identical to those observed along the ground state to excited state transitions characterized by molecular dynamic simulations run on the Anton supercomputer. Analyses of the molecular properties of the residues lining the egress path suggest that protein surface electrostatic potential may play a role in the release mechanism. Simulations of wild-type T4 lysozyme also reveal that benzene-egress-associated dynamics in the L99A mutant are potentially exaggerations of the substrate-processivity-related dynamics of the wild type.


Assuntos
Benzeno/química , Simulação de Dinâmica Molecular , Muramidase/química , Substituição de Aminoácidos , Sítios de Ligação , Simulação de Acoplamento Molecular , Muramidase/genética , Muramidase/metabolismo , Ligação Proteica , Eletricidade Estática
13.
Biochem J ; 475(20): 3221-3238, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30249606

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) drive most low-grade gliomas and secondary glioblastomas and many chondrosarcomas and acute myeloid leukemia cases. Most tumor-relevant IDH1 mutations are deficient in the normal oxidization of isocitrate to α-ketoglutarate (αKG), but gain the neomorphic activity of reducing αKG to D-2-hydroxyglutarate (D2HG), which drives tumorigenesis. We found previously that IDH1 mutants exhibit one of two reactivities: deficient αKG and moderate D2HG production (including commonly observed R132H and R132C) or moderate αKG and high D2HG production (R132Q). Here, we identify a third type of reactivity, deficient αKG and high D2HG production (R132L). We show that R132Q IDH1 has unique structural features and distinct reactivities towards mutant IDH1 inhibitors. Biochemical and cell-based assays demonstrate that while most tumor-relevant mutations were effectively inhibited by mutant IDH1 inhibitors, R132Q IDH1 had up to a 16 300-fold increase in IC50 versus R132H IDH1. Only compounds that inhibited wild-type (WT) IDH1 were effective against R132Q. This suggests that patients with a R132Q mutation may have a poor response to mutant IDH1 therapies. Molecular dynamics simulations revealed that near the NADP+/NADPH-binding site in R132Q IDH1, a pair of α-helices switches between conformations that are more wild-type-like or more mutant-like, highlighting mechanisms for preserved WT activity. Dihedral angle changes in the dimer interface and buried surface area charges highlight possible mechanisms for loss of inhibitor affinity against R132Q. This work provides a platform for predicting a patient's therapeutic response and identifies a potential resistance mutation that may arise upon treatment with mutant IDH inhibitors.


Assuntos
Carcinogênese/genética , Carcinogênese/metabolismo , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Mutação/fisiologia , Sítios de Ligação/fisiologia , Células HEK293 , Células HeLa , Humanos , Isocitrato Desidrogenase/química , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
14.
Biochemistry ; 57(20): 2943-2957, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29708732

RESUMO

Transcription activator proteins typically contain two functional domains: a DNA binding domain (DBD) that binds to DNA with sequence specificity and an activation domain (AD) whose established function is to recruit RNA polymerase. In this report, we show that purified recombinant nuclear factor κB (NF-κB) RelA dimers bind specific κB DNA sites with an affinity significantly lower than that of the same dimers from nuclear extracts of activated cells, suggesting that additional nuclear cofactors might facilitate DNA binding by the RelA dimers. Additionally, recombinant RelA binds DNA with relatively low affinity at a physiological salt concentration in vitro. The addition of p53 or RPS3 (ribosomal protein S3) increases RelA:DNA binding affinity 2- to >50-fold depending on the protein and ionic conditions. These cofactor proteins do not form stable ternary complexes, suggesting that they stabilize the RelA:DNA complex through dynamic interactions. Surprisingly, the RelA-DBD alone fails to bind DNA under the same solution conditions even in the presence of cofactors, suggesting an important role of the RelA-AD in DNA binding. Reduced RelA:DNA binding at a physiological ionic strength suggests that multiple cofactors might be acting simultaneously to mitigate the electrolyte effect and stabilize the RelA:DNA complex in vivo. Overall, our observations suggest that the RelA-AD and multiple cofactor proteins function cooperatively to prime the RelA-DBD and stabilize the RelA:DNA complex in cells. Our study provides a mechanism for nuclear cofactor proteins in NF-κB-dependent gene regulation.


Assuntos
Coenzimas/química , Proteínas de Ligação a DNA/química , NF-kappa B/química , Fator de Transcrição RelA/química , Linhagem Celular , Núcleo Celular/química , Núcleo Celular/genética , Coenzimas/genética , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Humanos , NF-kappa B/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Domínios Proteicos , Proteínas Ribossômicas/química , Fator de Transcrição RelA/genética , Proteína Supressora de Tumor p53/química
15.
ACS Cent Sci ; 4(12): 1617-1623, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30648145

RESUMO

Atmospheric aerosols have long been known to alter climate by scattering incoming solar radiation and acting as seeds for cloud formation. These processes have vast implications for controlling the chemistry of our environment and the Earth's climate. Sea spray aerosol (SSA) is emitted over nearly three-quarters of our planet, yet precisely how SSA impacts Earth's radiation budget remains highly uncertain. Over the past several decades, studies have shown that SSA particles are far more complex than just sea salt. Ocean biological and physical processes produce individual SSA particles containing a diverse array of biological species including proteins, enzymes, bacteria, and viruses and a diverse array of organic compounds including fatty acids and sugars. Thus, a new frontier of research is emerging at the nexus of chemistry, biology, and atmospheric science. In this Outlook article, we discuss how current and future aerosol chemistry research demands a tight coupling between experimental (observational and laboratory studies) and computational (simulation-based) methods. This integration of approaches will enable the systematic interrogation of the complexity within individual SSA particles at a level that will enable prediction of the physicochemical properties of real-world SSA, ultimately illuminating the detailed mechanisms of how the constituents within individual SSA impact climate.

16.
Biophys J ; 111(8): 1631-1640, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27760351

RESUMO

Proteins commonly sample a number of conformational states to carry out their biological function, often requiring transitions from the ground state to higher-energy states. Characterizing the mechanisms that guide these transitions at the atomic level promises to impact our understanding of functional protein dynamics and energy landscapes. The leucine-99-to-alanine (L99A) mutant of T4 lysozyme is a model system that has an experimentally well characterized excited sparsely populated state as well as a ground state. Despite the exhaustive study of L99A protein dynamics, the conformational changes that permit transitioning to the experimentally detected excited state (∼3%, ΔG ∼2 kcal/mol) remain unclear. Here, we describe the transitions from the ground state to this sparsely populated excited state of L99A as observed through a single molecular dynamics (MD) trajectory on the Anton supercomputer. Aside from detailing the ground-to-excited-state transition, the trajectory samples multiple metastates and an intermediate state en route to the excited state. Dynamic motions between these states enable cavity surface openings large enough to admit benzene on timescales congruent with known rates for benzene binding. Thus, these fluctuations between rare protein states provide an atomic description of the concerted motions that illuminate potential path(s) for ligand binding. These results reveal, to our knowledge, a new level of complexity in the dynamics of buried cavities and their role in creating mobile defects that affect protein dynamics and ligand binding.


Assuntos
Substituição de Aminoácidos , Bacteriófago T4/enzimologia , Movimento , Muramidase/genética , Muramidase/metabolismo , Simulação de Dinâmica Molecular , Muramidase/química , Mutação , Conformação Proteica
17.
Structure ; 24(8): 1248-1256, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27396830

RESUMO

Cullin-RING E3 ligases (CRLs) are elongated and bowed protein complexes that transfer ubiquitin over 60 Å to proteins targeted for proteasome degradation. One such CRL contains the ankyrin repeat and SOCS box protein 9 (ASB9), which binds to and partially inhibits creatine kinase (CK). While current models for the ASB9-CK complex contain some known interface residues, the overall structure and precise interface of the ASB9-CK complex remains unknown. Through an integrative modeling approach, we report a third-generation model that reveals precisely the interface interactions and also fits the shape of the ASB9-CK complex as determined by small-angle X-ray scattering. We constructed an atomic model for the entire CK-targeting CRL to uncover dominant modes of motion that could permit ubiquitin transfer. Remarkably, only the correctly docked CK-containing E3 ligase and not incorrectly docked structures permitted close approach of ubiquitin to the CK substrate.


Assuntos
Creatina Quinase/química , Proteínas Supressoras da Sinalização de Citocina/química , Ubiquitina/química , Motivos de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Creatina Quinase/genética , Creatina Quinase/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Especificidade por Substrato , Proteínas Supressoras da Sinalização de Citocina/genética , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Termodinâmica , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA