RESUMO
OBJECTIVES: γδ T cells mediate angiotensin II (AngII)-induced hypertension and vascular injury. γδ T cells expressing specific T-cell receptor (TCR) variable (V) γ chains develop in several waves in the thymus and migrate to specific or diverse tissues. We hypothesized that γδ T cells expressing specific Vγ subtypes in perivascular tissue mediate AngII hypertensive effects. METHODS: C57BL/6J male mice were infused or not with AngII (490âng/kg/min, subcutaneously) for 14âdays. γδ T-cell Vγ subtypes were profiled by flow cytometry in the spleen, descending thoracic aorta with adherent perivascular adipose tissue (DTAo/PVAT) and mesenteric vessels (MV)/PVAT. Other sets of AngII-infused mice were injected with control or specific anti-Vγ6 or Vγ4 antibodies. Blood pressure (BP) was determined by telemetry, and mesenteric artery function and remodeling by pressurized myography. RESULTS: Vγ6/Vδ1+ γδ T cells represented more than 50% of the γδ T-cell Vγ subtypes in DTAo/PVAT and MV/PVAT, whereas Vγ1/2+, Vγ4+ and Vγ6/Vδ1+ γδ T cells were the most abundant Vγ subtypes in the spleen. The frequency of Vγ6/Vδ1+ γδ T cells was increased at least 1.5-fold in the spleen and DTAo/PVAT, and tended to increase in MV/PVAT by AngII. A majority of Vγ6/Vδ1+ γδ T cells were activated in perivascular tissues. Vγ6/Vδ1+ γδ T-cell neutralization caused a steeper BP elevation and greater mesenteric artery endothelial dysfunction in mice infused with AngII. This was associated with more than three-fold increase in activated Vγ6/Vδ1- γδ T cells in perivascular tissues. Depletion of Vγ4+ γδ T cells did not alter AngII detrimental effects. CONCLUSION: Vγ6/Vδ1+ γδ T cells reduce the BP elevation and endothelial dysfunction induced by AngII infusion.
RESUMO
Many studies in the past 20 years have identified a contribution of inflammation and immune mechanisms to the pathophysiology of hypertension. Innate and adaptive immunity participate in this process. Among innate immune cells, macrophages and monocytes as well as dendritic cells, myeloid-derived suppressor cells, and neutrophils directly or via formation of neutrophil extracellular traps, play roles in the modulation of the inflammatory response in hypertension. Among adaptive immune cells, T and B cells have been implicated to varying degrees, particularly interleukin (IL)-17- and interferon γ-producing T lymphocytes, antagonized by T regulatory lymphocytes that are anti-inflammatory via production of IL-10. Among T cells that produce abundant IL-17, γδ T cells are unconventional T lymphocytes that are infrequent in the circulation in contrast to the much more abundant circulating αß T lymphocytes, but are found mostly in tissues, and appear to play a role in triggering and sustaining inflammation in hypertension leading to vascular and renal injury. This review will provide an overview of these different immune cell phenotypes involved in the immune pathophysiology of hypertension and associated vascular disease.
RESUMO
Resistant hypertension is defined as blood pressure that remains above the therapeutic goal despite concurrent use of at least three antihypertensive agents of different classes, including a diuretic, with all agents administered at maximum or maximally tolerated doses. Resistant hypertension is also diagnosed if blood pressure control requires four or more antihypertensive drugs. Assessment requires the exclusion of apparent treatment resistant hypertension, which is most often the result of non-adherence to treatment. Resistant hypertension is associated with major cardiovascular events in the short and long term, including heart failure, ischemic heart disease, stroke, and renal failure. Guidelines from several professional organizations recommend lifestyle modification and antihypertensive drugs. Medications typically include an angiotensin converting enzyme inhibitor or angiotensin receptor blocker, a calcium channel blocker, and a long acting thiazide-type/like diuretic; if a fourth drug is needed, evidence supports addition of a mineralocorticoid receptor antagonist. After a long pause since 2007 when the last antihypertensive class was approved, several novel agents are now under active development. Some of these may provide potent blood pressure lowering in broad groups of patients, such as aldosterone synthase inhibitors and dual endothelin receptor antagonists, whereas others may provide benefit by allowing treatment of resistant hypertension in special populations, such as non-steroidal mineralocorticoid receptor antagonists in patients with chronic kidney disease. Several device based approaches have been tested, with renal denervation being the best supported and only approved interventional device treatment for resistant hypertension.
Assuntos
Anti-Hipertensivos , Hipertensão , Humanos , Hipertensão/diagnóstico , Hipertensão/tratamento farmacológico , Hipertensão/terapia , Anti-Hipertensivos/uso terapêutico , Resistência a Medicamentos , Quimioterapia Combinada , Bloqueadores dos Canais de Cálcio/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologiaRESUMO
OBJECTIVES: γδ T-lymphocytes play a role in angiotensin II (AngII)-induced hypertension, vascular injury and T-cell infiltration in perivascular adipose tissue (PVAT) in mice. Mesenteric arteries of hypertensive mice and subcutaneous arteries from obese humans present similar remodeling. We hypothesized that γδ T-cell subtypes in mesenteric vessels with PVAT (MV/PVAT) from hypertensive mice and subcutaneous adipose tissue (SAT) from obese humans, who are prone to develop hypertension, would be similar. METHODS: Mice were infused with AngII for 14âdays. MV/PVAT T-cells were used for single-cell RNA-sequencing (scRNA-seq). scRNA-seq data (GSE155960) of SAT CD45 + cells from three lean and three obese women were downloaded from the Gene Expression Omnibus database. RESULTS: δ T-cell subclustering identified six δ T-cell subtypes. AngII increased T-cell receptor δ variable 4 ( Trdv4 ) + γδ T-effector memory cells and Cd28high δ T EM -cells, changes confirmed by flow cytometry. δ T-cell subclustering identified nine δ T-cell subtypes in human SAT. CD28 expressing δ T-cell subclustering demonstrated similar δ T-cell subpopulations in murine MV/PVAT and human SAT. Cd28+ γδ NKT EM and Cd28high δ T EM -cells increased in MV/PVAT from hypertensive mice and CD28high δ T EM -cells in SAT from obese women compared to the lean women. CONCLUSION: Similar CD28 + δ T-cells were identified in murine MV/PVAT and human SAT. CD28 high δ T EM -cells increased in MV/PVAT in hypertensive mice and in SAT from humans with obesity, a prehypertensive condition. CD28 + δ T-lymphocytes could have a pathogenic role in human hypertension associated with obesity, and could be a potential target for therapy.
Assuntos
Tecido Adiposo , Antígenos CD28 , Hipertensão , Obesidade , Gordura Subcutânea , Animais , Feminino , Humanos , Masculino , Camundongos , Tecido Adiposo/metabolismo , Angiotensina II , Antígenos CD28/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Linfócitos Intraepiteliais/metabolismo , Obesidade/metabolismo , Gordura Subcutânea/metabolismoRESUMO
Hypertension remains the leading cause of morbidity and mortality worldwide. Despite its prevalence, the development of novel antihypertensive therapies has only recently accelerated, with novel agents not yet commercialized, leaving a substantial proportion of individuals resistant to existing treatments. The intricate pathophysiology of hypertension is now understood to involve chronic low-grade inflammation, which places the immune system in the spotlight as a potential target for new therapeutics. This review explores the factors that initiate and sustain an immune response in hypertension, offering insights into potential targets for new treatments. Several factors contribute to immune activation in hypertension, including diet and damage-associated molecular pattern (DAMP) generation. Diets rich in fat or sodium can promote inflammation by inducing intestinal barrier dysfunction and triggering salt-sensitive receptors in T cells and dendritic cells. DAMPs, such as extracellular adenosine triphosphate and heat-shock protein 70, are released during episodes of increased blood pressure, contributing to immune cell activation and inflammation. Unconventional innate-like γδ T cells contribute to initiating and maintaining an immune response through their potential involvement in antigen presentation and regulating cytokine-mediated responses. Immunologic memory, sustained through the formation of effector memory T cells after exposure to hypertensive insults, likely contributes to maintaining an immune response in hypertension. When exposed to hypertensive insults, these memory cells are rapidly activated and contribute to elevated blood pressure and end-organ damage. Evidence from human hypertension, although limited, supports the relevance of distinct immune pathways in hypertension, and highlights the potential of targeted immune interventions in human hypertension. Diet and acute bouts of high blood pressure result in the release of dietary triggers, neoantigens, and damage-associated molecular patterns (DAMPs), which promote immune system activation. Elements such as lipopolysaccharides (LPS), sodium, heat-shock protein (HSP)70, extracellular adenosine triphosphate (eATP), and growth arrest-specific 6 (GAS6) promote activation of innate immune cells such as dendritic cells (DCs) and monocytes (Mo) through their respective receptors (toll-like receptor [TLR]4, amiloride-sensitive epithelial sodium channel [ENaC], TLR2/4, P2X7 receptor [P2RX7], and Axl) leading to costimulatory molecule expression and interleukin (IL)-1ß and IL-23 production. The neoantigens HSP70 and isolevuglandins (IsoLGs) are presented to T cells by DCs and possibly γδ T cells, triggering T cell activation, IL-17 and interferon (IFN)-γ production, and the formation of T effector memory (TEM) cells in the kidney, perivascular adipose tissue, bone marrow, and spleen. Exposure of TEM cells to their cognate antigen or previous activating stimuli causes these cells rapid expansion and activation. Cumulatively, this inflammatory state contributes to hypertension and end-organ damage. The figure was created using images from smart.servier.com and is licensed under a Creative Commons Attribution 4.0 license (CC BY 4.0).
Assuntos
Hipertensão , Humanos , Hipertensão/imunologia , Hipertensão/terapia , Hipertensão/fisiopatologia , Inflamação/imunologia , Animais , Linfócitos T/imunologiaAssuntos
Anti-Hipertensivos , Pressão Sanguínea , Hipertensão , Adesão à Medicação , RNA , Humanos , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Pressão Sanguínea/efeitos dos fármacos , Hipertensão/tratamento farmacológico , RNA/administração & dosagem , RNA/farmacologia , RNA/uso terapêutico , InjeçõesRESUMO
ET (endothelin) is a powerful vasoconstrictor 21-amino acid peptide present in many tissues, which exerts many physiological functions across the body and participates as a mediator in many pathological conditions. ETs exert their effects through ETA and ETB receptors, which can be blocked by selective receptor antagonists. ETs were shown to play important roles among others, in systemic hypertension, particularly when resistant or difficult to control, and in pulmonary hypertension, atherosclerosis, cardiac hypertrophy, subarachnoid hemorrhage, chronic kidney disease, diabetic cardiovascular disease, scleroderma, some cancers, etc. To date, ET antagonists are only approved for the treatment of primary pulmonary hypertension and recently for IgA nephropathy and used in the treatment of digital ulcers in scleroderma. However, they may soon be approved for the treatment of patients with resistant hypertension and different types of nephropathy. Here, the role of ETs is reviewed with a special emphasis on participation in and treatment of hypertension and chronic kidney disease.
Assuntos
Hipertensão Pulmonar , Hipertensão , Insuficiência Renal Crônica , Humanos , Antagonistas dos Receptores de Endotelina/uso terapêutico , Endotelinas , Hipertensão/tratamento farmacológico , Insuficiência Renal Crônica/complicações , Endotelina-1/fisiologia , Receptores de Endotelina , Receptor de Endotelina ARESUMO
OBJECTIVE: Extracellular ATP is elevated in hypertensive mice and humans and may trigger immune activation through the purinergic receptor P2X7 (P2RX7) causing interleukin-1ß production and T-cell activation and memory T-cell development. Furthermore, P2RX7 single nucleotide polymorphisms (SNP) are associated with hypertension. We hypothesized that P2RX7 activation contributes to hypertension and cardiovascular injury by promoting immune activation. METHODS: Male wild-type and P2rx7-/- mice were infused or not with angiotensin II (AngII) for 14âdays. A second group of AngII-infused wild-type mice were co-infused with the P2RX7 antagonist AZ10606120 or vehicle. BP was monitored by telemetry. Cardiac and mesenteric artery function and remodeling were assessed using ultrasound and pressure myography, respectively. T cells were profiled in thoracic aorta/perivascular adipose tissue by flow cytometry. Associations between SNPs within 50âkb of P2RX7 transcription, and BP or hypertension were modeled in 384â653 UK Biobank participants. RESULTS: P2rx7 inactivation attenuated AngII-induced SBP elevation, and mesenteric artery dysfunction and remodeling. This was associated with decreased perivascular infiltration of activated and effector memory T-cell subsets. Surprisingly, P2rx7 knockout exaggerated AngII-induced cardiac dysfunction and remodeling. Treatment with a P2RX7 antagonist reduced BP elevation, preserved mesenteric artery function and reduced activated and effector memory T cell perivascular infiltration without adversely affecting cardiac function and remodeling in AngII-infused mice. Three P2RX7 SNPs were associated with increased odds of DBP elevation. CONCLUSION: P2RX7 may represent a target for attenuating BP elevation and associated vascular damage by decreasing immune activation.
Assuntos
Hipertensão , Lesões do Sistema Vascular , Humanos , Camundongos , Masculino , Animais , Angiotensina II/farmacologia , Técnicas de Inativação de Genes , Hipertensão/induzido quimicamente , Hipertensão/genética , Linfócitos T , Camundongos Knockout , Camundongos Endogâmicos C57BL , Receptores Purinérgicos P2X7/genéticaRESUMO
BACKGROUND: Memory T cells develop during an initial hypertensive episode, sensitizing mice to develop hypertension from further mild hypertensive challenges. We hypothesized that memory γδ T cells develop after a hypertensive challenge and sensitize mice to develop hypertension in response to a subsequent mild hypertensive challenge. METHODS: The first aim was to profile memory γδ T cells after a 14-day pressor dose angiotensin II (AngII) infusion (490 ng/kg/min, subcutaneously) in male mice. The second aim was to deplete γδ T cells during a second 14-day subpressor dose AngII challenge (140 ng/kg/min, subcutaneously) in mice pre-exposed to an initial pressor dose AngII challenge. The third aim was to transfer 2.5 × 105 live pre-activated or not γδ T cells from mice that had received a 14-day pressor dose AngII infusion or sham treatment, to naive recipient mice stimulated with a subpressor dose AngII infusion. RESULTS: Effector memory γδ T cells increased 5.2-fold in mesenteric vessels and perivascular adipose tissue, and 1.8-fold in mesenteric lymph nodes in pressor dose AngII-infused mice compared with sham-treated mice. Mice depleted of γδ T cells had 14 mm Hg lower systolic blood pressure (SBP) elevation than control mice from day 7 to 14 of subpressor dose AngII infusion. Adoptive transfer of γδ T cells from hypertensive mice induced an 18 mm Hg higher SBP elevation compared with a subpressor dose AngII infusion vs. γδ T cells transferred from sham-treated mice. CONCLUSIONS: Memory γδ T cells develop in response to hypertensive stimuli, and contribute to the pathogenesis of hypertension.
RESUMO
T cells localized to the kidneys and vasculature/perivascular adipose tissue (PVAT) play an important role in hypertension and vascular injury. CD4+, CD8+, and γδ T-cell subtypes are programmed to produce interleukin (IL)-17 or interferon-γ (IFNγ), and naïve T cells can be induced to produce IL-17 via the IL-23 receptor. Importantly, both IL-17 and IFNγ have been demonstrated to contribute to hypertension. Therefore, profiling cytokine-producing T-cell subtypes in tissues relevant to hypertension provides useful information regarding immune activation. Here, we describe a protocol to obtain single-cell suspensions from the spleen, mesenteric lymph nodes, mesenteric vessels and PVAT, lungs, and kidneys, and profile IL-17A- and IFNγ-producing T cells using flow cytometry. This protocol is different from cytokine assays such as ELISA or ELISpot in that no prior cell sorting is required, and various T-cell subsets can be identified and individually assessed for cytokine production simultaneously within an individual sample. This is advantageous as sample processing is kept to a minimum, yet many tissues and T-cell subsets can be screened for cytokine production in a single experiment. In brief, single-cell suspensions are activated in vitro with phorbol 12-myristate 13-acetate (PMA) and ionomycin, and Golgi cytokine export is inhibited with monensin. Cells are then stained for viability and extracellular marker expression. They are then fixed and permeabilized with paraformaldehyde and saponin. Finally, antibodies against IL-17 and IFNγ are incubated with the cell suspensions to report cytokine production. T-cell cytokine production and marker expression is then determined by running samples on a flow cytometer. While other groups have published methods to perform T-cell intracellular cytokine staining for flow cytometry, this protocol is the first to describe a highly reproducible method to activate, phenotype, and determine cytokine production by CD4, CD8, and γδ T cells isolated from PVAT. Additionally, this protocol can be easily modified to investigate other intracellular and extracellular markers of interest, allowing for efficient T-cell phenotyping.
RESUMO
A subset of interleukin (IL)-17A-producing γδ T cells called γδT17 cells may contribute to progression of hypertension. γδT17 cell development is in part dependent upon IL-23 receptor (IL-23R) stimulation. We hypothesized that angiotensin (Ang) II-induced blood pressure (BP) elevation and vascular injury would be blunted in Il23r knock-in (Il23rgfp/gfp) mice deficient in functional IL-23R. To test this hypothesis, we infused wild-type (WT) and Il23rgfp/gfp mice with Ang II (490 ng/kg/min, SC) for 7 or 14 days. We recorded BP by telemetry, assessed vascular function and remodeling using pressurized myography, and profiled T cell populations and cytokine production by flow cytometry. An additional set of Il23rgfp/gfp mice was infused with Ang II for 7 days and injected with interferon (IFN)-γ-neutralizing or control antibodies. Il23rgfp/gfp mice had smaller and stiffer mesenteric arteries and were not protected against Ang II-induced BP elevation. BP was higher in Il23rgfp/gfp mice than WT mice from day 3 until day 9 of Ang II infusion. Il23rgfp/gfp mice had less γδT17 cells and more IFN-γ-producing γδ, CD4+, and CD8+ T cells than WT mice. Seven days of Ang II infusion led to increased IFN-γ-producing γδ, CD4+, and CD8+ T cells in Il23rgfp/gfp mice, whereas only IFN-γ-producing γδ T cells were increased in WT mice. Blocking IFN-γ with a neutralizing antibody reduced the pressor response to 7 days of Ang II infusion in Il23rgfp/gfp mice. Functional IL-23R deficiency was associated with increased IFN-γ-producing T cells and exaggerated initial development of Ang II-induced hypertension, which was in part mediated by IFN-γ.
Assuntos
Angiotensina II , Linfócitos T CD8-Positivos , Hipertensão , Animais , Camundongos , Angiotensina II/farmacologia , Pressão Sanguínea , Hipertensão/induzido quimicamente , Interferon gama , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Interleucina/deficiência , Receptores de Interleucina/genéticaRESUMO
Background: The hypertension specialist often receives referrals of patients with young-onset, severe, difficult-to-control hypertension, patients with hypertensive emergencies, and patients with secondary causes of hypertension. Specialist hypertension care compliments primary care for these complex patients and contributes to an overall hypertension control strategy. The objective of this study was to characterize hypertension centres and the practice patterns of Canadian hypertension specialists. Methods: Adult hypertension specialists across Canada were surveyed to describe hypertension centres and specialist practice in Canada, including the following: the patient population managed by hypertension specialists; details on how care is provided; practice pattern variations; and differences in access to specialized hypertension resources across the country. Results: The survey response rate was 73.5% from 25 hypertension centres. Most respondents were nephrologists and general internal medicine specialists. Hypertension centres saw between 50 and 2500 patients yearly. A mean of 17% (± 15%) of patients were referred from the emergency department and a mean of 52% (± 24%) were referred from primary care. Most centres had access to specialized testing (adrenal vein sampling, level 1 sleep studies, autonomic testing) and advanced therapies for resistant hypertension (renal denervation). Considerable heterogeneity was present in the target blood pressure in young people with low cardiovascular risk and in the diagnostic algorithms for investigating secondary causes of hypertension. Conclusions: These results summarize the current state of hypertension specialist care and highlight opportunities for further collaboration among hypertension specialists, including standardization of the approach to specialist care for patients with hypertension.
Contexte: Le spécialiste de l'hypertension reçoit souvent des patients orientés pour une hypertension sévère, d'apparition précoce et difficile à maîtriser, pour une urgence hypertensive ou pour des causes secondaires de l'hypertension. Les soins spécialisés de l'hypertension complètent les soins primaires pour ces cas complexes et font partie d'une stratégie globale de maîtrise de l'hypertension. Cette étude avait pour objectif de caractériser les centres de traitement de l'hypertension et les habitudes de pratique des spécialistes canadiens qui traitent l'hypertension. Méthodologie: Un sondage a été mené auprès de spécialistes de l'hypertension adulte de l'ensemble du Canada afin de décrire les centres de traitement de l'hypertension et la pratique des spécialistes au Canada, notamment les éléments suivants : la population de patients prise en charge par des spécialistes de l'hypertension, les renseignements sur la façon dont les soins sont prodigués, les variations dans les habitudes de pratique ainsi que les différences relatives à l'accès aux ressources spécialisées en hypertension à l'échelle du pays. Résultats: Le taux de réponse au sondage a été de 73,5 % dans 25 centres de l'hypertension. La plupart des répondants étaient des néphrologues et des spécialistes en médecine interne générale. Les centres de l'hypertension recevaient entre 50 et 2500 patients par année. En moyenne, 17 % (± 15 %) des patients provenaient du service des urgences et 52 % (± 24 %) provenaient d'une unité de soins primaires. La plupart des centres avaient accès à des tests spécialisés (prélèvements veineux surrénaliens, études du sommeil de niveau 1, tests autonomes) et à des traitements avancés pour l'hypertension résistante (dénervation rénale). Une hétérogénéité considérable a été constatée en ce qui concerne la pression artérielle cible chez les jeunes présentant un faible risque cardiovasculaire et les algorithmes diagnostiques pour étudier les causes secondaires de l'hypertension. Conclusions: Ces résultats résument la situation actuelle des soins spécialisés de l'hypertension et font ressortir des occasions d'accroître la collaboration entre les spécialistes de l'hypertension, notamment en ce qui concerne une normalisation de l'approche des soins spécialisés pour les patients hypertendus.
RESUMO
Deficiency of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) lyase (HL) is an autosomal recessive inborn error of acyl-CoA metabolism affecting the last step of leucine degradation. Patients with HL deficiency (HLD) can develop a potentially fatal cardiomyopathy. We created mice with cardiomyocyte-specific HLD (HLHKO mice), inducing Cre recombinase-mediated deletion of exon 2 at two months of age. HLHKO mice survive, but develop left ventricular hypertrophy by 9 months. Also, within minutes after intraperitoneal injection of the leucine metabolite 2-ketoisocaproate (KIC), they show transient left ventricular hypocontractility and dilation. Leucine-related acyl-CoAs were elevated in HLHKO heart (e.g., HMG-CoA, 34.0 ± 4.4 nmol/g versus 0.211 ± 0.041 in controls, p < 0.001; 3-methylcrotonyl-CoA, 5.84 ± 0.69 nmol/g versus 0.282 ± 0.043, p < 0.001; isovaleryl-CoA, 1.86 ± 0.30 nmol/g versus 0.024 ± 0.014, p < 0.01), a similar pattern to that in liver of mice with hepatic HL deficiency. After KIC loading, HMG-CoA levels in HLHKO heart were higher than under basal conditions, as were the ratios of HMG-CoA/acetyl-CoA and of HMG-CoA/succinyl-CoA. In contrast to the high levels of multiple leucine-related acyl-CoAs, biomarkers in urine and plasma of HLHKO mice show isolated hyper-3-methylglutaconic aciduria (700.8 ± 48.4 mmol/mol creatinine versus 37.6 ± 2.4 in controls, p < 0.001), and elevated C5-hydroxyacylcarnitine in plasma (0.248 ± 0.014 µmol/L versus 0.048 ± 0.005 in controls, p < 0.001). Mice with liver-specific HLD were compared, and showed normal echocardiographic findings and normal acyl-CoA profiles in heart. This study of nonhepatic tissue-specific HLD outside of liver reveals organ-specific origins of diagnostic biomarkers for HLD in blood and urine and shows that mouse cardiac HL is essential for myocardial function in a cell-autonomous, organ-autonomous fashion.
Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Cardiomiopatias , Animais , Camundongos , Leucina , Acil Coenzima A/metabolismo , Cardiomiopatias/genética , BiomarcadoresRESUMO
OBJECTIVE: Hypertension is associated with vascular injury, which contributes to end-organ damage. MicroRNAs regulating mRNAs have been shown to play a role in vascular injury in hypertensive mice. We aimed to identify differentially expressed microRNAs and their mRNA targets in small arteries of hypertensive patients with/without chronic kidney disease (CKD) to shed light on the pathophysiological molecular mechanisms of vascular remodeling. METHODS AND RESULTS: Normotensive individuals and hypertensive patients with/without CKD were recruited ( n â=â15-16 per group). Differentially expressed microRNAs and mRNAs were identified uniquely associated with hypertension (microRNAs: 10, mRNAs: 68) or CKD (microRNAs: 68, mRNAs: 395), and in both groups (microRNAs: 2, mRNAs: 32) with a P less than 0.05 and a fold change less than or greater than 1.3 in subcutaneous small arteries ( n â=â14-15). One of the top three differentially expressed microRNAs, miR-338-3p that was down-regulated in CKD, presented the best correlation between RNA sequencing and reverse transcription-quantitative PCR (RT-qPCR, R2 â=â0.328, P â<â0.001). Profiling of human aortic vascular cells showed that miR-338-3p was mostly expressed in endothelial cells. Two of the selected top nine up-regulated miR-338-3p predicted targets, glutathione peroxidase 3 ( GPX3 ) and protein tyrosine phosphatase receptor type S ( PTPRS ), were validated with mimics by RT-qPCR in human aortic endothelial cells ( P â<â0.05) and by a luciferase assay in HEK293T cells ( P â<â0.05). CONCLUSION: A distinct transcriptomic profile was observed in gluteal subcutaneous small arteries of hypertensive patients with CKD. Down-regulated miR-338-3p could contribute to GPX3 and PTPRS up-regulation via the canonical microRNA targeting machinery in hypertensive patients with CKD.http://links.lww.com/HJH/C27.
Assuntos
Hipertensão , MicroRNAs , Insuficiência Renal Crônica , Lesões do Sistema Vascular , Animais , Aorta/metabolismo , Células Endoteliais/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Células HEK293 , Humanos , Hipertensão/complicações , Hipertensão/genética , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/metabolismo , RNA Mensageiro , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/genética , Insuficiência Renal Crônica/metabolismo , TranscriptomaRESUMO
Hypertension is the leading risk factor for cardiovascular disease and mortality worldwide. Despite intensive research into the mechanisms underlying the development of hypertension, it remains difficult to control blood pressure in a large proportion of patients. Young men have a higher prevalence of hypertension compared with age-matched women, and this holds true until approximately the fifth decade of life. Following the onset of menopause, the incidence of hypertension among women begins to surpass that of men. The immune system has been demonstrated to play a role in the pathophysiology of hypertension, and biological sex and sex hormones can affect the function of innate and adaptive immune cell populations. Recent studies in male and female animal models of hypertension have begun to unravel the relationship among sex, immunity, and hypertension. Hypertensive male animals show a bias toward proinflammatory T-cell subsets, including interleukin (IL) 17-producing TH17 cells, and increased renal infiltration of T cells and inflammatory macrophages. Conversely, premenopausal female animals are largely protected from hypertension, and have a predilection for anti-inflammatory T regulatory cells and production of anti-inflammatory cytokines, such as IL-10. Menopause abrogates female protection from hypertension, which may be due to changes among anti-inflammatory T regulatory cell populations. Since development of novel treatments for hypertension has plateaued, determining the role of sex in the pathophysiology of hypertension may open new therapeutic avenues for both men and women.