Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Mol Biosci ; 11: 1364637, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836107

RESUMO

The gut microbiota in cattle is essential for protein, energy, and vitamin production and hence, microbiota perturbations can affect cattle performance. This study evaluated the effect of intramammary (IMM) ceftiofur treatment and lactation stage on the functional gut microbiome and metabolome. Forty dairy cows were enrolled at dry-off. Half received IMM ceftiofur and a non-antibiotic teat sealant containing bismuth subnitrate (cases), while the other half received the teat sealant (controls). Fecal samples were collected before treatment at dry off, during the dry period (weeks 1 and 5) and the first week after calving (week 9). Shotgun metagenomic sequencing was applied to predict microbial metabolic pathways whereas untargeted metabolomics was used identify polar and nonpolar metabolites. Compared to controls, long-term changes were observed in the cows given ceftiofur, including a lower abundance of microbial pathways linked to energy production, amino acid biosynthesis, and other vital molecules. The metabolome of treated cows had elevated levels of stachyose, phosphatidylethanolamine diacylglycerol (PE-DAG), and inosine a week after the IMM ceftiofur application, indicating alterations in microbial fermentation, lipid metabolism, energy, and cellular signaling. Differences were also observed by sampling, with cows in late lactation having more diverse metabolic pathways and a unique metabolome containing higher levels of histamine and histamine-producing bacteria. These data illustrate how IMM ceftiofur treatment can alter the functionality of the hindgut metabolome and microbiome. Understanding how antibiotics and lactation stages, which are each characterized by unique diets and physiology, impact the function of resident microbes is critical to define normal gut function in dairy cattle.

2.
Front Cell Infect Microbiol ; 14: 1359576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38779558

RESUMO

While enteric pathogens have been widely studied for their roles in causing foodborne infection, their impacts on the gut microbial community have yet to be fully characterized. Previous work has identified notable changes in the gut microbiome related to pathogen invasion, both taxonomically and genetically. Characterization of the metabolic landscape during and after enteric infection, however, has not been explored. Consequently, we investigated the metabolome of paired stools recovered from 60 patients (cases) during and after recovery from enteric bacterial infections (follow-ups). Shotgun metagenomics was applied to predict functional microbial pathways combined with untargeted metametabolomics classified by Liquid Chromatography Mass Spectrometry. Notably, cases had a greater overall metabolic capacity with significantly higher pathway richness and evenness relative to the follow-ups (p<0.05). Metabolic pathways related to central carbon metabolism, amino acid metabolism, and lipid and fatty acid biosynthesis were more highly represented in cases and distinct signatures for menaquinone production were detected. By contrast, the follow-up samples had a more diverse metabolic landscape with enhanced richness of polar metabolites (p<0.0001) and significantly greater richness, evenness, and overall diversity of nonpolar metabolites (p<0.0001). Although many metabolites could not be annotated with existing databases, a marked increase in certain clusters of metabolites was observed in the follow-up samples when compared to the case samples and vice versa. These findings suggest the importance of key metabolites in gut health and recovery and enhance understanding of metabolic fluctuations during enteric infections.


Assuntos
Fezes , Microbioma Gastrointestinal , Metaboloma , Metagenômica , Humanos , Fezes/microbiologia , Fezes/química , Metagenômica/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Redes e Vias Metabólicas , Adulto , Metabolômica , Idoso , Bactérias/classificação , Bactérias/metabolismo , Bactérias/genética , Bactérias/isolamento & purificação , Adulto Jovem
3.
Nature ; 626(8000): 852-858, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326608

RESUMO

Bile acids (BAs) are steroid detergents in bile that contribute to the absorption of fats and fat-soluble vitamins while shaping the gut microbiome because of their antimicrobial properties1-4. Here we identify the enzyme responsible for a mechanism of BA metabolism by the gut microbiota involving amino acid conjugation to the acyl-site of BAs, thus producing a diverse suite of microbially conjugated bile acids (MCBAs). We show that this transformation is mediated by acyltransferase activity of bile salt hydrolase (bile salt hydrolase/transferase, BSH/T). Clostridium perfringens BSH/T rapidly performed acyl transfer when provided various amino acids and taurocholate, glycocholate or cholate, with an optimum at pH 5.3. Amino acid conjugation by C. perfringens BSH/T was diverse, including all proteinaceous amino acids except proline and aspartate. MCBA production was widespread among gut bacteria, with strain-specific amino acid use. Species with similar BSH/T amino acid sequences had similar conjugation profiles and several bsh/t alleles correlated with increased conjugation diversity. Tertiary structure mapping of BSH/T followed by mutagenesis experiments showed that active site structure affects amino acid selectivity. These MCBA products had antimicrobial properties, where greater amino acid hydrophobicity showed greater antimicrobial activity. Inhibitory concentrations of MCBAs reached those measured natively in the mammalian gut. MCBAs fed to mice entered enterohepatic circulation, in which liver and gallbladder concentrations varied depending on the conjugated amino acid. Quantifying MCBAs in human faecal samples showed that they reach concentrations equal to or greater than secondary and primary BAs and were reduced after bariatric surgery, thus supporting MCBAs as a significant component of the BA pool that can be altered by changes in gastrointestinal physiology. In conclusion, the inherent acyltransferase activity of BSH/T greatly diversifies BA chemistry, creating a set of previously underappreciated metabolites with the potential to affect the microbiome and human health.


Assuntos
Aciltransferases , Amidoidrolases , Ácidos e Sais Biliares , Clostridium perfringens , Microbioma Gastrointestinal , Animais , Humanos , Camundongos , Aciltransferases/química , Aciltransferases/metabolismo , Alelos , Amidoidrolases/química , Amidoidrolases/metabolismo , Aminoácidos/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Cirurgia Bariátrica , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Domínio Catalítico , Clostridium perfringens/enzimologia , Clostridium perfringens/metabolismo , Fezes/química , Vesícula Biliar/metabolismo , Microbioma Gastrointestinal/fisiologia , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Fígado/metabolismo , Ácido Taurocólico/metabolismo
4.
Hortic Res ; 10(10): uhad169, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38025975

RESUMO

Anthracnose fruit rot (AFR), caused by the fungal pathogen Colletotrichum fioriniae, is among the most destructive and widespread fruit disease of blueberry, impacting both yield and overall fruit quality. Blueberry cultivars have highly variable resistance against AFR. To date, this pathogen is largely controlled by applying various fungicides; thus, a more cost-effective and environmentally conscious solution for AFR is needed. Here we report three quantitative trait loci associated with AFR resistance in northern highbush blueberry (Vaccinium corymbosum). Candidate genes within these genomic regions are associated with the biosynthesis of flavonoids (e.g. anthocyanins) and resistance against pathogens. Furthermore, we examined gene expression changes in fruits following inoculation with Colletotrichum in a resistant cultivar, which revealed an enrichment of significantly differentially expressed genes associated with certain specialized metabolic pathways (e.g. flavonol biosynthesis) and pathogen resistance. Using non-targeted metabolite profiling, we identified a flavonol glycoside with properties consistent with a quercetin rhamnoside as a compound exhibiting significant abundance differences among the most resistant and susceptible individuals from the genetic mapping population. Further analysis revealed that this compound exhibits significant abundance differences among the most resistant and susceptible individuals when analyzed as two groups. However, individuals within each group displayed considerable overlapping variation in this compound, suggesting that its abundance may only be partially associated with resistance against C. fioriniae. These findings should serve as a powerful resource that will enable breeding programs to more easily develop new cultivars with superior resistance to AFR and as the basis of future research studies.

5.
Foods ; 12(20)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37893640

RESUMO

Industrial processing of tart cherries (Prunus cerasus L.) produces bioproducts like cherry pits (CP), which contribute to adverse environmental effects. To identify sustainable strategies to minimize the environmental impact of cherry processing, we investigated their potential value as antioxidants for prospective utilization within cosmeceutical applications. Untargeted metabolomic analyses of water and water: ethanol CP extracts using an eco-friendly technique revealed significant enrichment in coumaroyl derivatives and flavonoids with congruent metabolite representation regardless of the extraction solvent. The antioxidant activity of tart CP extracts was evaluated on human skin cells exposed to H2O2 or LPS, modeling environmentally induced oxidants. Notably, both CP extracts provide antioxidant activity by reducing H2O2 or LPS-induced ROS in human skin keratinocytes without affecting cell viability. The CP extracts increased the expression of CAT and SOD1 genes encoding antioxidant regulatory enzymes while decreasing the expression of NOS2, a pro-oxidant regulator. These findings reveal the antioxidant properties of tart CP, offering new opportunities to produce natural-based skin care products and adding economic value while providing sustainable options to reduce the environmental impact of food byproducts.

6.
Evolution ; 77(10): 2301-2313, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37527551

RESUMO

Evolutionary correlations between chemical defense and protection by mutualist bodyguards have been long predicted, but tests of these patterns remain rare. We use a phylogenetic framework to test for evolutionary correlations indicative of trade-offs or synergisms between direct defense in the form of plant secondary metabolism and indirect defense in the form of leaf domatia, across 33 species in the wild grape genus, Vitis. We also performed a bioassay with a generalist herbivore to associate our chemical phenotypes with herbivore palatability. Finally, we tested whether defensive traits correlated with the average abiotic characteristics of each species' contemporary range and whether these correlations were consistent with plant defense theory. We found a negative evolutionary correlation between domatia size and the diversity of secondary metabolites in Vitis leaf tissue across the genus, and also that leaves with a higher diversity and richness of secondary metabolites were less palatable to a generalist herbivore, consistent with a trade-off in chemical and mutualistic defense investment. Predictions from plant defense theory were not supported by associations between investment in defense phenotypes and abiotic variables. Our work demonstrates an evolutionary pattern indicative of a trade-off between indirect and direct defense strategies across the Vitis genus.


Assuntos
Vitis , Filogenia , Evolução Biológica , Folhas de Planta , Plantas , Herbivoria
7.
Chem Res Toxicol ; 36(6): 900-915, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37184393

RESUMO

Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been associated with the induction of oxidative stress and the progression of steatosis to steatohepatitis with fibrosis. It also disrupts metabolic pathways including one-carbon metabolism (OCM) and the transsulfuration pathway with possible consequences on glutathione (GSH) levels. In this study, complementary RNAseq and metabolomics data were integrated to examine the hepatic transsulfuration pathway and glutathione biosynthesis in mice following treatment with TCDD every 4 days for 28 days. TCDD dose-dependently repressed hepatic cystathionine ß-synthase (CBS) and cystathionine γ-lyase (CTH) mRNA and protein levels. Reduced CBS and CTH levels are also correlated with dose-dependent decreases in hepatic extract hydrogen sulfide (H2S). In contrast, cysteine levels increased consistent with the induction of Slc7a11, which encodes for the cystine/glutamate Xc- antiporter. Cotreatment of primary hepatocytes with sulfasalazine, a cystine/glutamate Xc- antiporter inhibitor, decreased labeled cysteine incorporation into GSH with a corresponding increase in TCDD cytotoxicity. Although reduced and oxidized GSH levels were unchanged following treatment due to the induction of GSH/GSSG efflux transporter by TCDD, the GSH:GSSG ratio decreased and global protein S-glutathionylation levels in liver extracts increased in response to oxidative stress along with the induction of glutamate-cysteine ligase catalytic subunit (Gclc), glutathione synthetase (Gss), glutathione disulfide reductase (Gsr), and glutathione transferase π (Gstp). Furthermore, levels of ophthalmic acid, a biomarker of oxidative stress indicating GSH consumption, were also increased. Collectively, the data suggest that increased cystine transport due to cystine/glutamate Xc- antiporter induction compensated for decreased cysteine production following repression of the transsulfuration pathway to support GSH synthesis in response to TCDD-induced oxidative stress.


Assuntos
Fígado Gorduroso , Dibenzodioxinas Policloradas , Camundongos , Animais , Cisteína/metabolismo , Cistina , Dissulfeto de Glutationa/metabolismo , Dibenzodioxinas Policloradas/farmacologia , Ácido Glutâmico , Antiporters , Glutationa/metabolismo
8.
ACS Biomater Sci Eng ; 9(2): 932-943, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36634351

RESUMO

Repeating l- and d-chiral configurations determine polylactide (PLA) stereochemistry, which affects its thermal and physicochemical properties, including degradation profiles. Clinically, degradation of implanted PLA biomaterials promotes prolonged inflammation and excessive fibrosis, but the role of PLA stereochemistry is unclear. Additionally, although PLA of varied stereochemistries causes differential immune responses in vivo, this observation has yet to be effectively modeled in vitro. A bioenergetic model was applied to study immune cellular responses to PLA containing >99% l-lactide (PLLA), >99% d-lactide (PDLA), and a 50/50 melt-blend of PLLA and PDLA (stereocomplex PLA). Stereocomplex PLA breakdown products increased IL-1ß, TNF-α, and IL-6 protein levels but not MCP-1. Expression of these proinflammatory cytokines is mechanistically driven by increases in glycolysis in primary macrophages. In contrast, PLLA and PDLA degradation products selectively increase MCP-1 protein expression. Although both oxidative phosphorylation and glycolysis are increased with PDLA, only oxidative phosphorylation is increased with PLLA. For each biomaterial, glycolytic inhibition reduces proinflammatory cytokines and markedly increases anti-inflammatory (IL-10) protein levels; differential metabolic changes in fibroblasts were observed. These findings provide mechanistic explanations for the diverse immune responses to PLA of different stereochemistries and underscore the pivotal role of immunometabolism in the biocompatibility of biomaterials applied in medicine.


Assuntos
Materiais Biocompatíveis , Poliésteres , Poliésteres/farmacologia , Poliésteres/química , Materiais Biocompatíveis/farmacologia , Próteses e Implantes , Citocinas
9.
J Lipid Res ; 63(12): 100297, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36243101

RESUMO

Bile acids (BAs) are steroid detergents in bile that contribute to fat absorption, cell signaling, and microbiome interactions. The final step in their synthesis is amino acid conjugation with either glycine or taurine in the liver by the enzyme bile acid-CoA:amino acid N-acyltransferase (BAAT). Here, we describe the microbial, chemical, and physiological consequences of Baat gene knockout. Baat-/- mice were underweight after weaning but quickly exhibited catch-up growth. At three weeks of age, KO animals had increased phospholipid excretion and decreased subcutaneous fat pad mass, liver mass, glycogen staining in hepatocytes, and hepatic vitamin A stores, but these were less marked in adulthood. Additionally, KO mice had an altered microbiome in early life. Their BA pool was highly enriched in cholic acid but not completely devoid of conjugated BAs. KO animals had 27-fold lower taurine-conjugated BAs than wild type in their liver but similar concentrations of glycine-conjugated BAs and higher microbially conjugated BAs. Furthermore, the BA pool in Baat-/- was enriched in a variety of unusual BAs that were putatively sourced from cysteamine conjugation with subsequent oxidation and methylation of the sulfur group mimicking taurine. Antibiotic treatment of KO mice indicated the microbiome was not the likely source of the unusual conjugations, instead, the unique BAs in KO animals were likely derived from the peroxisomal acyltransferases Acnat1 and Acnat2, which are duplications of Baat in the mouse genome that are inactivated in humans. This study demonstrates that BA conjugation is important for early life development of mice.


Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Humanos , Camundongos , Animais , Adulto , Técnicas de Inativação de Genes , Camundongos Knockout , Fígado/metabolismo , Taurina/metabolismo , Glicina
10.
J Biol Chem ; 298(9): 102301, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35931118

RESUMO

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent ß-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent ß-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent ß-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.


Assuntos
Acil Coenzima A , Poluentes Ambientais , Fígado Gorduroso , Fígado , Dibenzodioxinas Policloradas , Deficiência de Vitamina B 12 , Vitamina B 12 , Ácido Aconítico/metabolismo , Acil Coenzima A/metabolismo , Animais , Cobalto/metabolismo , Cisteína/metabolismo , Poluentes Ambientais/toxicidade , Fígado Gorduroso/induzido quimicamente , Fígado Gorduroso/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Metilmalonil-CoA Mutase/genética , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Dibenzodioxinas Policloradas/toxicidade , Receptores de Hidrocarboneto Arílico/metabolismo , Succinatos/metabolismo , Vitamina B 12/metabolismo , Deficiência de Vitamina B 12/induzido quimicamente , Deficiência de Vitamina B 12/complicações
11.
Proc Natl Acad Sci U S A ; 119(14): e2123268119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35349335

RESUMO

SignificanceMany gram-positive organisms have evolved an elegant solution to sense and resist antimicrobial peptides that inhibit cell-wall synthesis. These organisms express an unusual "Bce-type" adenosine triphosphate-binding cassette (ABC) transporter that recognizes complexes formed between antimicrobial peptides and lipids involved in cell-wall biosynthesis. In this work, we provide the first structural snapshots of a Bce-type ABC transporter trapped in different conformational states. Our structures and associated biochemical data provide key insights into the novel target protection mechanism that these unusual ABC transporters use to sense and resist antimicrobial peptides. The studies described herein set the stage to begin developing a comprehensive molecular understanding of the diverse interactions between antimicrobial peptides and conserved resistance machinery found across most gram-positive organisms.


Assuntos
Bacitracina , Farmacorresistência Bacteriana , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antibacterianos/farmacologia , Bacillus subtilis/metabolismo , Bacitracina/metabolismo , Bacitracina/farmacologia , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo
12.
Ecol Evol ; 12(1): e8545, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35127045

RESUMO

For 10,000 years humans have altered plant traits through domestication and ongoing crop improvement, shaping plant form and function in agroecosystems. To date, studies have focused on how these processes shape whole-plant or average traits; however, plants also have characteristic levels of trait variability among their repeated parts, which can be heritable and mediate critical ecological interactions. Here, we examine an underappreciated scale of trait variation-among leaves, within plants-that may have changed through the process of domestication and improvement. Variability at this scale may itself be a target of selection, or be shaped as a by-product of the domestication process. We explore how levels of among-leaf trait variability differ between cultivars and wild relatives of alfalfa (Medicago sativa), a key forage crop with a 7,000-year domestication history. We grew individual plants from 30 wild populations and 30 cultivars, and quantified variability in a broad suite of physical, nutritive, and chemical leaf traits, including measures of chemical dissimilarity (beta diversity) among leaves within each plant. We find that trait variability has changed over the course of domestication, with effects often larger than changes in trait means. Domestic alfalfa had elevated among-leaf variability in SLA, trichomes, and C:N; increased diversity in defensive compounds; and reduced variability in phytochemical composition. We also elucidate fundamental relationships between trait means and variability, and between overall production of secondary metabolites and patterns of chemical diversity. We conclude that within-plant variability is an overlooked dimension of trait diversity in a globally critical agricultural crop. Trait variability is actually higher in cultivated plants compared to wild progenitors for multiple nutritive, physical, and chemical traits, highlighting a scale of variation that may mitigate loss of trait diversity at other scales in alfalfa agroecosystems, and in other crops with similar histories of domestication and improvement.

13.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34969836

RESUMO

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Assuntos
Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica , Biotinilação , Membrana Celular , Microscopia Crioeletrônica , Proteínas de Ligação a DNA , Endopeptidases , Escherichia coli , Proteínas de Escherichia coli/química , Modelos Moleculares , Desnaturação Proteica , Dobramento de Proteína , Estreptavidina
14.
Chem Biodivers ; 17(1): e1900465, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31701649

RESUMO

We performed comparative profiling of four specialized metabolites in the lichen Evernia prunastri, collected at three different geographic locations, California and Maine, USA, and Yoshkar Ola, Mari El, Russia. Among the compounds produced at high concentrations that were identified in all three specimens, evernic acid, usnic acid, lecanoric acid and chloroatranorin, evernic acid was the most abundant. Two depsidones, salazinic acid and physodic acid, were detected in the Yoshkar-Ola collection only. The crystalline structure of evernic acid (2-hydroxy-4-[(2-hydroxy-4-methoxy-6-methylbenzoyl)oxy]-6-methylbenzoate) (hmb) revealed two crystallographically and conformationally distinct hmb anions, along with two monovalent sodium atoms. One hmb moiety contained an exotetradentate binding mode to sodium, whereas the other exhibited an exohexadentate binding mode to sodium. Embedded edge-sharing {Na2 O8 }n sodium-oxygen chains connected the hmb anions into the full three-dimensional crystal structure of the title compound. The crystal used for single-crystal X-ray diffraction exhibited non-merohedral twinning. The data suggest the importance of the acetyl-polymalonyl pathway products to processes of maintaining integrity of the lichen holobiont community.


Assuntos
Benzofuranos/análise , Hidroxibenzoatos/análise , Líquens/química , Salicilatos/análise , Benzofuranos/metabolismo , Hidroxibenzoatos/metabolismo , Líquens/metabolismo , Modelos Moleculares , Salicilatos/metabolismo
15.
Sci Adv ; 5(4): eaaw3754, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31032420

RESUMO

Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars. While cultivated tomato (Solanum lycopersicum) strictly accumulates acylsucroses, the South American wild relative Solanum pennellii produces copious amounts of acylglucoses. Genetic, transgenic, and biochemical dissection of the S. pennellii acylglucose biosynthetic pathway identified a trichome gland cell-expressed invertase-like enzyme that hydrolyzes acylsucroses (Sopen03g040490). This enzyme acts on the pyranose ring-acylated acylsucroses found in the wild tomato but not on the furanose ring-decorated acylsucroses of cultivated tomato. These results show that modification of the core acylsucrose biosynthetic pathway leading to loss of furanose ring acylation set the stage for co-option of a general metabolic enzyme to produce a new class of protective compounds.


Assuntos
Glucose/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Sacarose/metabolismo , Tricomas/metabolismo , beta-Frutofuranosidase/metabolismo , Acilação , Cromossomos de Plantas/genética , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Proteínas de Plantas/genética , Tricomas/genética , Tricomas/crescimento & desenvolvimento , beta-Frutofuranosidase/genética
16.
New Phytol ; 223(2): 751-765, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30920667

RESUMO

In the natural pesticides known as pyrethrins, which are esters produced in flowers of Tanacetum cinerariifolium (Asteraceae), the monoterpenoid acyl moiety is pyrethric acid or chrysanthemic acid. We show here that pyrethric acid is produced from chrysanthemol in six steps catalyzed by four enzymes, the first five steps occurring in the trichomes covering the ovaries and the last one occurring inside the ovary tissues. Three steps involve the successive oxidation of carbon 10 (C10) to a carboxylic group by TcCHH, a cytochrome P450 oxidoreductase. Two other steps involve the successive oxidation of the hydroxylated carbon 1 to give a carboxylic group by TcADH2 and TcALDH1, the same enzymes that catalyze these reactions in the formation of chrysanthemic acid. The ultimate result of the actions of these three enzymes is the formation of 10-carboxychrysanthemic acid in the trichomes. Finally, the carboxyl group at C10 is methylated by TcCCMT, a member of the SABATH methyltransferase family, to give pyrethric acid. This reaction occurs mostly in the ovaries. Expression in N. benthamiana plants of all four genes encoding aforementioned enzymes, together with TcCDS, a gene that encodes an enzyme that catalyzes the formation of chrysanthemol, led to the production of pyrethric acid.


Assuntos
Inseticidas/análise , Nicotiana/metabolismo , Piretrinas/metabolismo , Vias Biossintéticas , Chrysanthemum cinerariifolium/química , Sistema Enzimático do Citocromo P-450/metabolismo , Flores/química , Regulação da Expressão Gênica de Plantas , Metilação , Filogenia , Extratos Vegetais/química , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidade por Substrato
17.
Gigascience ; 8(3)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715294

RESUMO

BACKGROUND: Highbush blueberry (Vaccinium corymbosum) has long been consumed for its unique flavor and composition of health-promoting phytonutrients. However, breeding efforts to improve fruit quality in blueberry have been greatly hampered by the lack of adequate genomic resources and a limited understanding of the underlying genetics encoding key traits. The genome of highbush blueberry has been particularly challenging to assemble due, in large part, to its polyploid nature and genome size. FINDINGS: Here, we present a chromosome-scale and haplotype-phased genome assembly of the cultivar "Draper," which has the highest antioxidant levels among a diversity panel of 71 cultivars and 13 wild Vaccinium species. We leveraged this genome, combined with gene expression and metabolite data measured across fruit development, to identify candidate genes involved in the biosynthesis of important phytonutrients among other metabolites associated with superior fruit quality. Genome-wide analyses revealed that both polyploidy and tandem gene duplications modified various pathways involved in the biosynthesis of key phytonutrients. Furthermore, gene expression analyses hint at the presence of a spatial-temporal specific dominantly expressed subgenome including during fruit development. CONCLUSIONS: These findings and the reference genome will serve as a valuable resource to guide future genome-enabled breeding of important agronomic traits in highbush blueberry.


Assuntos
Mirtilos Azuis (Planta)/genética , Evolução Molecular , Genoma de Planta , Haplótipos/genética , Compostos Fitoquímicos/genética , Tetraploidia , Antioxidantes/metabolismo , Vias Biossintéticas/genética , Cromossomos de Plantas/genética , Frutas/genética , Frutas/crescimento & desenvolvimento , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Anotação de Sequência Molecular , Família Multigênica , Compostos Fitoquímicos/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Plant Physiol ; 176(1): 524-537, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122986

RESUMO

Flowers of Tanacetum cinerariifolium produce a set of compounds known collectively as pyrethrins, which are commercially important pesticides that are strongly toxic to flying insects but not to most vertebrates. A pyrethrin molecule is an ester consisting of either trans-chrysanthemic acid or its modified form, pyrethric acid, and one of three alcohols, jasmolone, pyrethrolone, and cinerolone, that appear to be derived from jasmonic acid. Chrysanthemyl diphosphate synthase (CDS), the first enzyme involved in the synthesis of trans-chrysanthemic acid, was characterized previously and its gene isolated. TcCDS produces free trans-chrysanthemol in addition to trans-chrysanthemyl diphosphate, but the enzymes responsible for the conversion of trans-chrysanthemol to the corresponding aldehyde and then to the acid have not been reported. We used an RNA sequencing-based approach and coexpression correlation analysis to identify several candidate genes encoding putative trans-chrysanthemol and trans-chrysanthemal dehydrogenases. We functionally characterized the proteins encoded by these genes using a combination of in vitro biochemical assays and heterologous expression in planta to demonstrate that TcADH2 encodes an enzyme that oxidizes trans-chrysanthemol to trans-chrysanthemal, while TcALDH1 encodes an enzyme that oxidizes trans-chrysanthemal into trans-chrysanthemic acid. Transient coexpression of TcADH2 and TcALDH1 together with TcCDS in Nicotiana benthamiana leaves results in the production of trans-chrysanthemic acid as well as several other side products. The majority (58%) of trans-chrysanthemic acid was glycosylated or otherwise modified. Overall, these data identify key steps in the biosynthesis of pyrethrins and demonstrate the feasibility of metabolic engineering to produce components of these defense compounds in a heterologous host.


Assuntos
Vias Biossintéticas/genética , Chrysanthemum cinerariifolium/enzimologia , Chrysanthemum cinerariifolium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Inseticidas/química , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Piretrinas/química , Chrysanthemum cinerariifolium/genética , Flores/metabolismo , Genes de Plantas , Estudos de Associação Genética , Cinética , Oxirredutases/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Piretrinas/metabolismo , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Terpenos/química , Terpenos/metabolismo
19.
Sci Adv ; 2(5): e1600241, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27386547

RESUMO

Ca(2+)-sensing receptors (CaSRs) modulate calcium and magnesium homeostasis and many (patho)physiological processes by responding to extracellular stimuli, including divalent cations and amino acids. We report the first crystal structure of the extracellular domain (ECD) of human CaSR bound with Mg(2+) and a tryptophan derivative ligand at 2.1 Å. The structure reveals key determinants for cooperative activation by metal ions and aromatic amino acids. The unexpected tryptophan derivative was bound in the hinge region between two globular ECD subdomains, and represents a novel high-affinity co-agonist of CaSR. The dissection of structure-function relations by mutagenesis, biochemical, and functional studies provides insights into the molecular basis of human diseases arising from CaSR mutations. The data also provide a novel paradigm for understanding the mechanism of CaSR-mediated signaling that is likely shared by the other family C GPCR [G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor] members and can facilitate the development of novel CaSR-based therapeutics.


Assuntos
Íons/química , Magnésio/química , Receptores de Detecção de Cálcio/química , Triptofano/química , Linhagem Celular , Humanos , Íons/metabolismo , Ligantes , Magnésio/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Ligação Proteica , Receptores de Detecção de Cálcio/agonistas , Receptores de Detecção de Cálcio/genética , Receptores de Detecção de Cálcio/metabolismo , Relação Estrutura-Atividade , Triptofano/análogos & derivados , Triptofano/metabolismo
20.
Plant Physiol ; 170(3): 1331-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811191

RESUMO

Glandular trichomes of cultivated tomato (Solanum lycopersicum) and many other species throughout the Solanaceae produce and secrete mixtures of sugar esters (acylsugars) on the plant aerial surfaces. In wild and cultivated tomato, these metabolites consist of a sugar backbone, typically glucose or sucrose, and two to five acyl chains esterified to various positions on the sugar core. The aliphatic acyl chains vary in length and branching and are transferred to the sugar by a series of reactions catalyzed by acylsugar acyltransferases. A phenotypic screen of a set of S. lycopersicum M82 × Solanum pennellii LA0716 introgression lines identified a dominant genetic locus on chromosome 5 from the wild relative that affected total acylsugar levels. Genetic mapping revealed that the reduction in acylsugar levels was consistent with the presence and increased expression of two S. pennellii genes (Sopen05g030120 and Sopen05g030130) encoding putative carboxylesterase enzymes of the α/ß-hydrolase superfamily. These two enzymes, named ACYLSUGAR ACYLHYDROLASE1 (ASH1) and ASH2, were shown to remove acyl chains from specific positions of certain types of acylsugars in vitro. A survey of related genes in M82 and LA0716 identified another trichome-expressed ASH gene on chromosome 9 (M82, Solyc09g075710; LA0716, Sopen09g030520) encoding a protein with similar activity. Characterization of the in vitro activities of the SpASH enzymes showed reduced activities with acylsugars produced by LA0716, presumably contributing to the high-level production of acylsugars in the presence of highly expressed SpASH genes.


Assuntos
Carboxilesterase/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Metabolismo dos Carboidratos , Carboxilesterase/genética , Mapeamento Cromossômico , Genes de Plantas , Hidrólise , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Solanum/genética , Solanum/metabolismo , Sacarose/análogos & derivados , Sacarose/química , Sacarose/metabolismo , Tricomas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA