Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Front Immunol ; 15: 1282754, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444851

RESUMO

Introduction: Dengue virus infection is a global health problem lacking specific therapy, requiring an improved understanding of DENV immunity and vaccine responses. Considering the recent emerging of new dengue vaccines, here we performed an integrative systems vaccinology characterization of molecular signatures triggered by the natural DENV infection (NDI) and attenuated dengue virus infection models (DVTs). Methods and results: We analyzed 955 samples of transcriptomic datasets of patients with NDI and attenuated dengue virus infection trials (DVT1, DVT2, and DVT3) using a systems vaccinology approach. Differential expression analysis identified 237 common differentially expressed genes (DEGs) between DVTs and NDI. Among them, 28 and 60 DEGs were up or downregulated by dengue vaccination during DVT2 and DVT3, respectively, with 20 DEGs intersecting across all three DVTs. Enriched biological processes of these genes included type I/II interferon signaling, cytokine regulation, apoptosis, and T-cell differentiation. Principal component analysis based on 20 common DEGs (overlapping between DVTs and our NDI validation dataset) distinguished dengue patients by disease severity, particularly in the late acute phase. Machine learning analysis ranked the ten most critical predictors of disease severity in NDI, crucial for the anti-viral immune response. Conclusion: This work provides insights into the NDI and vaccine-induced overlapping immune response and suggests molecular markers (e.g., IFIT5, ISG15, and HERC5) for anti-dengue-specific therapies and effective vaccination development.


Assuntos
Dengue , Vacinas , Viroses , Humanos , Vacinologia , Vacinação , Dengue/prevenção & controle
2.
J Med Virol ; 95(10): e29042, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37885152

RESUMO

Rabies is an ancient neuroinvasive viral (genus Lyssavirus, family Rhabdoviridae) disease affecting approximately 59,000 people worldwide. The central nervous system (CNS) is targeted, and rabies has a case fatality rate of almost 100% in humans and animals. Rabies is entirely preventable through proper vaccination, and thus, the highest incidence is typically observed in developing countries, mainly in Africa and Asia. However, there are still cases in European countries and the United States. Recently, demographic, increasing income levels, and the coronavirus disease 2019 (COVID-19) pandemic have caused a massive raising in the animal population, enhancing the need for preventive measures (e.g., vaccination, surveillance, and animal control programs), postexposure prophylaxis, and a better understanding of rabies pathophysiology to identify therapeutic targets, since there is no effective treatment after the onset of clinical manifestations. Here, we review the neuroimmune biology and mechanisms of rabies. Its pathogenesis involves a complex and poorly understood modulation of immune and brain functions associated with metabolic, synaptic, and neuronal impairments, resulting in fatal outcomes without significant histopathological lesions in the CNS. In this context, the neuroimmunological and neurochemical aspects of excitatory/inhibitory signaling (e.g., GABA/glutamate crosstalk) are likely related to the clinical manifestations of rabies infection. Uncovering new links between immunopathological mechanisms and neurochemical imbalance will be essential to identify novel potential therapeutic targets to reduce rabies morbidity and mortality.


Assuntos
Vírus da Raiva , Raiva , Humanos , Animais , Estados Unidos , Raiva/epidemiologia , Vacinação , Europa (Continente) , Resultado do Tratamento , Profilaxia Pós-Exposição/métodos
3.
Life (Basel) ; 13(9)2023 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-37763328

RESUMO

BACKGROUND: COVID-19 led to the suspension academic activities worldwide, affecting millions of students and staff. METHODS: In this study, we evaluated the presence of IgM and IgG anti-SARS-CoV-2 antibodies in an academic population during the return to classes after a one-year suspension. The study took place over five months at a Brazilian university and included 942 participants. RESULTS: We found that most participants had reactive IgG and non-reactive IgM. All received at least one dose, and 940 received two or more doses, of different COVID-19 vaccines. We obtained a higher average of memory antibodies (IgG) in participants who received the CoronaVac/ChAdOx1 combination. IgG was consistently distributed for each vaccine group, but individuals who completed the vaccination schedule had higher levels. There were no differences between antibodies and gender, presence of symptoms, and previous COVID-19 infection, but older participants (>53 years) and contacts of infected individuals had higher IgM levels. CONCLUSION: This study makes significant contributions to the assessment of antibodies in the academic environment, allowing us to infer that most participants had memory immunity and low indications of recent infection when returning to face-to-face classes, as well as demonstrating the need to monitor immunity and update vaccinations.

4.
NPJ Aging ; 9(1): 21, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620330

RESUMO

Age is a significant risk factor for the coronavirus disease 2019 (COVID-19) severity due to immunosenescence and certain age-dependent medical conditions (e.g., obesity, cardiovascular disorder, and chronic respiratory disease). However, despite the well-known influence of age on autoantibody biology in health and disease, its impact on the risk of developing severe COVID-19 remains poorly explored. Here, we performed a cross-sectional study of autoantibodies directed against 58 targets associated with autoimmune diseases in 159 individuals with different COVID-19 severity (71 mild, 61 moderate, and 27 with severe symptoms) and 73 healthy controls. We found that the natural production of autoantibodies increases with age and is exacerbated by SARS-CoV-2 infection, mostly in severe COVID-19 patients. Multiple linear regression analysis showed that severe COVID-19 patients have a significant age-associated increase of autoantibody levels against 16 targets (e.g., amyloid ß peptide, ß catenin, cardiolipin, claudin, enteric nerve, fibulin, insulin receptor a, and platelet glycoprotein). Principal component analysis with spectrum decomposition and hierarchical clustering analysis based on these autoantibodies indicated an age-dependent stratification of severe COVID-19 patients. Random forest analysis ranked autoantibodies targeting cardiolipin, claudin, and platelet glycoprotein as the three most crucial autoantibodies for the stratification of severe COVID-19 patients ≥50 years of age. Follow-up analysis using binomial logistic regression found that anti-cardiolipin and anti-platelet glycoprotein autoantibodies significantly increased the likelihood of developing a severe COVID-19 phenotype with aging. These findings provide key insights to explain why aging increases the chance of developing more severe COVID-19 phenotypes.

5.
Front Immunol ; 14: 1243516, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37638052

RESUMO

Dengue virus (DENV) infection manifests as a febrile illness with three distinct phases: early acute, late acute, and convalescent. Dengue can result in clinical manifestations with different degrees of severity, dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Interferons (IFNs) are antiviral cytokines central to the anti-DENV immune response. Notably, the distinct global signature of type I, II, and III interferon-regulated genes (the interferome) remains uncharacterized in dengue patients to date. Therefore, we performed an in-depth cross-study for the integrative analysis of transcriptome data related to DENV infection. Our systems biology analysis shows that the anti-dengue immune response is characterized by the modulation of numerous interferon-regulated genes (IRGs) enriching, for instance, cytokine-mediated signaling (e.g., type I and II IFNs) and chemotaxis, which is then followed by a transcriptional wave of genes associated with cell cycle, also regulated by the IFN cascade. The adjunct analysis of disease stratification potential, followed by a transcriptional meta-analysis of the interferome, indicated genes such as IFI27, ISG15, and CYBRD1 as potential suitable biomarkers of disease severity. Thus, this study characterizes the landscape of the interferome signature in DENV infection, indicating that interferome dynamics are a crucial and central part of the anti-dengue immune response.


Assuntos
Interferons , Biologia de Sistemas , Humanos , Interferons/genética , Citocinas/genética , Antivirais , Ciclo Celular
6.
Front Public Health ; 11: 1095162, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37304100

RESUMO

The historical and social vulnerability of quilombola communities in Brazil can make them especially fragile in the face of COVID-19, considering that several individuals have precarious health systems and inadequate access to water. This work aimed to characterize the frequency of SARS-COV-2 infections and the presence of IgM and IgG SARS-CoV-2 antibodies in quilombola populations and their relationship with the presence of risk factors or preexisting chronic diseases in the quilombola communities. We analyzed the sociodemographic and clinical characteristics, serological status, comorbidities, and symptoms of 1,994 individuals (478 males and 1,536 females) from 18 Brazilian municipalities in the State of Sergipe of quilombola communities, which were evaluated at different epidemiological weeks, starting at the 32nd (August 6th) and ending at the 40th (October 3rd) epidemiological week. More than 70% of studied families live in rural areas and they have an extreme poverty social status. Although we found a higher number of SARS-COV-2 infections in quilombola communities than in the local population, their SARS-CoV-2 reactivity and IgM and IgG positivity varied across the communities investigated. Arterial hypertension was the most risk factor, being found in 27.8% of the individuals (9.5% in stage 1, 10.8% in stage 2, and 7.5% in stage 3). The most common COVID-19 symptoms and comorbidities were headache, runny nose, flu, and dyslipidemia. However, most individuals were asymptomatic (79.9%). Our data indicate that mass testing must be incorporated into public policy to improve the health care system available to quilombola populations during a future pandemic or epidemic.


Assuntos
COVID-19 , Feminino , Masculino , Humanos , COVID-19/epidemiologia , Brasil/epidemiologia , SARS-CoV-2 , Pandemias , Imunoglobulina G , Imunoglobulina M
8.
Autoimmun Rev ; 22(5): 103310, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906052

RESUMO

G protein-coupled receptors (GPCR) are involved in various physiological and pathophysiological processes. Functional autoantibodies targeting GPCRs have been associated with multiple disease manifestations in this context. Here we summarize and discuss the relevant findings and concepts presented in the biennial International Meeting on autoantibodies targeting GPCRs (the 4th Symposium), held in Lübeck, Germany, 15-16 September 2022. The symposium focused on the current knowledge of these autoantibodies' role in various diseases, such as cardiovascular, renal, infectious (COVID-19), and autoimmune diseases (e.g., systemic sclerosis and systemic lupus erythematosus). Beyond their association with disease phenotypes, intense research related to the mechanistic action of these autoantibodies on immune regulation and pathogenesis has been developed, underscoring the role of autoantibodies targeting GPCRs on disease outcomes and etiopathogenesis. The observation repeatedly highlighted that autoantibodies targeting GPCRs could also be present in healthy individuals, suggesting that anti-GPCR autoantibodies play a physiologic role in modeling the course of diseases. Since numerous therapies targeting GPCRs have been developed, including small molecules and monoclonal antibodies designed for treating cancer, infections, metabolic disorders, or inflammatory conditions, anti-GPCR autoantibodies themselves can serve as therapeutic targets to reduce patients' morbidity and mortality, representing a new area for the development of novel therapeutic interventions.


Assuntos
Doenças Autoimunes , COVID-19 , Humanos , Autoanticorpos , Autoimunidade , Receptores Acoplados a Proteínas G/metabolismo
9.
J Med Virol ; 95(2): e28538, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36722456

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with increased levels of autoantibodies targeting immunological proteins such as cytokines and chemokines. Reports further indicate that COVID-19 patients may develop a broad spectrum of autoimmune diseases due to reasons not fully understood. Even so, the landscape of autoantibodies induced by SARS-CoV-2 infection remains uncharted territory. To gain more insight, we carried out a comprehensive assessment of autoantibodies known to be linked to diverse autoimmune diseases observed in COVID-19 patients in a cohort of 231 individuals, of which 161 were COVID-19 patients (72 with mild, 61 moderate, and 28 with severe disease) and 70 were healthy controls. Dysregulated IgG and IgA autoantibody signatures, characterized mainly by elevated concentrations, occurred predominantly in patients with moderate or severe COVID-19 infection. Autoantibody levels often accompanied anti-SARS-CoV-2 antibody concentrations while stratifying COVID-19 severity as indicated by random forest and principal component analyses. Furthermore, while young versus elderly COVID-19 patients showed only slight differences in autoantibody levels, elderly patients with severe disease presented higher IgG autoantibody concentrations than young individuals with severe COVID-19. This work maps the intersection of COVID-19 and autoimmunity by demonstrating the dysregulation of multiple autoantibodies triggered during SARS-CoV-2 infection. Thus, this cross-sectional study suggests that SARS-CoV-2 infection induces autoantibody signatures associated with COVID-19 severity and several autoantibodies that can be used as biomarkers of COVID-19 severity, indicating autoantibodies as potential therapeutical targets for these patients.


Assuntos
Doenças Autoimunes , COVID-19 , Idoso , Humanos , Autoanticorpos , Estudos Transversais , SARS-CoV-2 , Imunoglobulina G
10.
J Med Virol ; 95(2): e28450, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36597912

RESUMO

Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Transcriptoma , Células Matadoras Naturais , Ciclo Celular
11.
Heliyon ; 8(11): e11368, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36349284

RESUMO

Brazil experienced one of the most prolonged periods of school closures, and reopening could have exposed students to high rates of SARS-CoV-2 infection. However, the infection status of students and school workers at the time of the reopening of schools located in Brazilian cities is unknown. Here we evaluated viral carriage by RT-PCR and seroprevalence of anti-SARS-CoV-2 antibodies (IgM and IgG) by immunochromatography in 2259 individuals (1139 students and 1120 school workers) from 28 schools in 28 Brazilian cities. We collected the samples within 30 days after public schools reopened and before the start of vaccination campaigns. Most students (n = 421) and school workers (n = 446) had active (qRT-PCR + IgM- IgG- or qRT-PCR + IgM + IgG-/+) SARS-CoV-2 infection. Regression analysis indicated a strong association between the infection status of students and school workers. Furthermore, while 45% (n = 515) of the students and 37% (n = 415) of the school workers were neither antigen nor antibody positive in laboratory tests, 16% of the participants (169 students and 193 school workers) were oligosymptomatic, including those reinfected. These individuals presented mild symptoms such as headache, sore throat, and cough. Notably, most of the individuals were asymptomatic (83.9%). These results indicate that many SARS-CoV-2 infections in Brazilian cities during school reopening were asymptomatic. Thus, our study highlights the need to promote a coordinated public health effort to guarantee a safe educational environment while avoiding exacerbating pre-existent social inequalities in Brazil, reducing social, mental, and economic losses for students, school workers, and their families.

12.
Vaccines (Basel) ; 10(9)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36146463

RESUMO

Neglected Tropical Diseases (NTDs) are a group of diseases that are highly prevalent in tropical and subtropical regions, and closely associated with poverty and marginalized populations. Infectious diseases affect over 1.6 billion people annually, and vaccines are the best prophylactic tool against them. Along with NTDs, emerging and reemerging infectious diseases also threaten global public health, as they can unpredictably result in pandemics. The recent advances in vaccinology allowed the development and licensing of new vaccine platforms that can target and prevent these diseases. In this work, we discuss the advances in vaccinology and some of the difficulties found in the vaccine development pipeline for selected NTDs and emerging and reemerging infectious diseases, including HIV, Dengue, Ebola, Chagas disease, malaria, leishmaniasis, zika, and chikungunya.

13.
Cells ; 11(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269470

RESUMO

Severe COVID-19 patients present a clinical and laboratory overlap with other hyperinflammatory conditions such as hemophagocytic lymphohistiocytosis (HLH). However, the underlying mechanisms of these conditions remain to be explored. Here, we investigated the transcriptome of 1596 individuals, including patients with COVID-19 in comparison to healthy controls, other acute inflammatory states (HLH, multisystem inflammatory syndrome in children [MIS-C], Kawasaki disease [KD]), and different respiratory infections (seasonal coronavirus, influenza, bacterial pneumonia). We observed that COVID-19 and HLH share immunological pathways (cytokine/chemokine signaling and neutrophil-mediated immune responses), including gene signatures that stratify COVID-19 patients admitted to the intensive care unit (ICU) and COVID-19_nonICU patients. Of note, among the common differentially expressed genes (DEG), there is a cluster of neutrophil-associated genes that reflects a generalized hyperinflammatory state since it is also dysregulated in patients with KD and bacterial pneumonia. These genes are dysregulated at the protein level across several COVID-19 studies and form an interconnected network with differentially expressed plasma proteins that point to neutrophil hyperactivation in COVID-19 patients admitted to the intensive care unit. scRNAseq analysis indicated that these genes are specifically upregulated across different leukocyte populations, including lymphocyte subsets and immature neutrophils. Artificial intelligence modeling confirmed the strong association of these genes with COVID-19 severity. Thus, our work indicates putative therapeutic pathways for intervention.


Assuntos
COVID-19 , Linfo-Histiocitose Hemofagocítica , Inteligência Artificial , COVID-19/complicações , COVID-19/genética , Criança , Humanos , Linfo-Histiocitose Hemofagocítica/complicações , Ativação de Neutrófilo , SARS-CoV-2 , Síndrome de Resposta Inflamatória Sistêmica
14.
Nat Commun ; 13(1): 1220, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264564

RESUMO

COVID-19 shares the feature of autoantibody production with systemic autoimmune diseases. In order to understand the role of these immune globulins in the pathogenesis of the disease, it is important to explore the autoantibody spectra. Here we show, by a cross-sectional study of 246 individuals, that autoantibodies targeting G protein-coupled receptors (GPCR) and RAS-related molecules associate with the clinical severity of COVID-19. Patients with moderate and severe disease are characterized by higher autoantibody levels than healthy controls and those with mild COVID-19 disease. Among the anti-GPCR autoantibodies, machine learning classification identifies the chemokine receptor CXCR3 and the RAS-related molecule AGTR1 as targets for antibodies with the strongest association to disease severity. Besides antibody levels, autoantibody network signatures are also changing in patients with intermediate or high disease severity. Although our current and previous studies identify anti-GPCR antibodies as natural components of human biology, their production is deregulated in COVID-19 and their level and pattern alterations might predict COVID-19 disease severity.


Assuntos
Autoanticorpos/imunologia , COVID-19/imunologia , Receptores Acoplados a Proteínas G/imunologia , Sistema Renina-Angiotensina/imunologia , Autoanticorpos/sangue , Autoimunidade , Biomarcadores/sangue , COVID-19/sangue , COVID-19/classificação , Estudos Transversais , Feminino , Humanos , Aprendizado de Máquina , Masculino , Análise Multivariada , Receptor Tipo 1 de Angiotensina/imunologia , Receptores CXCR3/imunologia , SARS-CoV-2 , Índice de Gravidade de Doença
15.
Sci Rep ; 11(1): 20281, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645905

RESUMO

Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.


Assuntos
Candida albicans/imunologia , Candida glabrata/imunologia , Candida parapsilosis/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Transdução de Sinais/imunologia , Antivirais/farmacologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Humanos , Imunidade , Imunidade Inata , Interferons/metabolismo , RNA-Seq , Transcrição Gênica , Transcriptoma
16.
PLoS Negl Trop Dis ; 15(8): e0009575, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34351896

RESUMO

Since the 2015 to 2016 outbreak in America, Zika virus (ZIKV) infected almost 900,000 patients. This international public health emergency was mainly associated with a significant increase in the number of newborns with congenital microcephaly and abnormal neurologic development, known as congenital Zika syndrome (CZS). Furthermore, Guillain-Barré syndrome (GBS), a neuroimmune disorder of adults, has also been associated with ZIKV infection. Currently, the number of ZIKV-infected patients has decreased, and most of the cases recently reported present as a mild and self-limiting febrile illness. However, based on its natural history of a typical example of reemerging pathogen and the lack of specific therapeutic options against ZIKV infection, new outbreaks can occur worldwide, demanding the attention of researchers and government authorities. Here, we discuss the clinical spectrum and immunopathological mechanisms underlying ZIKV-induced neurological manifestations. Several studies have confirmed the tropism of ZIKV for neural progenitor stem cells by demonstrating the presence of ZIKV in the central nervous system (CNS) during fetal development, eliciting a deleterious inflammatory response that compromises neurogenesis and brain formation. Of note, while the neuropathology of CZS can be due to a direct viral neuropathic effect, adults may develop neuroimmune manifestations such as GBS due to poorly understood mechanisms. Antiganglioside autoantibodies have been detected in multiple patients with ZIKV infection-associated GBS, suggesting a molecular mimicry. However, further additional immunopathological mechanisms remain to be uncovered, paving the way for new therapeutic strategies.


Assuntos
Encéfalo/embriologia , Síndrome de Guillain-Barré/virologia , Microcefalia/virologia , Infecção por Zika virus/patologia , Zika virus/patogenicidade , Animais , Encéfalo/virologia , Feminino , Síndrome de Guillain-Barré/etiologia , Humanos , Camundongos , Células-Tronco Neurais/virologia , Gravidez , Complicações Infecciosas na Gravidez , Infecção por Zika virus/virologia
17.
JCI Insight ; 6(10)2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34027897

RESUMO

The fact that the COVID-19 fatality rate varies by sex and age is poorly understood. Notably, the outcome of SARS-CoV-2 infections mostly depends on the control of cytokine storm and the increasingly recognized pathological role of uncontrolled neutrophil activation. Here, we used an integrative approach with publicly available RNA-Seq data sets of nasopharyngeal swabs and peripheral blood leukocytes from patients with SARS-CoV-2, according to sex and age. Female and young patients infected by SARS-CoV-2 exhibited a larger number of differentially expressed genes (DEGs) compared with male and elderly patients, indicating a stronger immune modulation. Among them, we found an association between upregulated cytokine/chemokine- and downregulated neutrophil-related DEGs. This was correlated with a closer relationship between female and young subjects, while the relationship between male and elderly patients was closer still. The association between these cytokine/chemokines and neutrophil DEGs is marked by a strongly correlated interferome network. Here, female patients exhibited reduced transcriptional levels of key proinflammatory/neutrophil-related genes, such as CXCL8 receptors (CXCR1 and CXCR2), IL-1ß, S100A9, ITGAM, and DBNL, compared with male patients. These genes are well known to be protective against inflammatory damage. Therefore, our work suggests specific immune-regulatory pathways associated with sex and age of patients infected with SARS-CoV-2 and provides a possible association between inverse modulation of cytokine/chemokine and neutrophil transcriptional signatures.


Assuntos
COVID-19/genética , Citocinas/genética , Redes Reguladoras de Genes , Adulto , Fatores Etários , Idoso , COVID-19/epidemiologia , COVID-19/imunologia , Citocinas/imunologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neutrófilos/imunologia , Neutrófilos/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Fatores Sexuais , Transcriptoma
18.
Sci Rep ; 10(1): 15931, 2020 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-32985601

RESUMO

Several studies reported a central role of the endothelin type A receptor (ETAR) in tumor progression leading to the formation of metastasis. Here, we investigated the in vitro and in vivo anti-tumor effects of the FDA-approved ETAR antagonist, Ambrisentan, which is currently used to treat patients with pulmonary arterial hypertension. In vitro, Ambrisentan inhibited both spontaneous and induced migration/invasion capacity of different tumor cells (COLO-357 metastatic pancreatic adenocarcinoma, OvCar3 ovarian carcinoma, MDA-MB-231 breast adenocarcinoma, and HL-60 promyelocytic leukemia). Whole transcriptome analysis using RNAseq indicated Ambrisentan's inhibitory effects on the whole transcriptome of resting and PAR2-activated COLO-357 cells, which tended to normalize to an unstimulated profile. Finally, in a pre-clinical murine model of metastatic breast cancer, treatment with Ambrisentan was effective in decreasing metastasis into the lungs and liver. Importantly, this was associated with a significant enhancement in animal survival. Taken together, our work suggests a new therapeutic application for Ambrisentan in the treatment of cancer metastasis.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Movimento Celular , Antagonistas do Receptor de Endotelina A/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Fenilpropionatos/farmacologia , Piridazinas/farmacologia , Animais , Anti-Hipertensivos/farmacologia , Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Feminino , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Invasividade Neoplásica , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Front Immunol ; 10: 2742, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31849949

RESUMO

Almost 70 years after establishing the concept of primary immunodeficiency disorders (PIDs), more than 320 monogenic inborn errors of immunity have been identified thanks to the remarkable contribution of high-throughput genetic screening in the last decade. Approximately 40 of these PIDs present with autoimmune or auto-inflammatory symptoms as the primary clinical manifestation instead of infections. These PIDs are now recognized as diseases of immune dysregulation. Loss-of function mutations in genes such as FOXP3, CD25, LRBA, IL-10, IL10RA, and IL10RB, as well as heterozygous gain-of-function mutations in JAK1 and STAT3 have been reported as causative of these disorders. Identifying these syndromes has considerably contributed to expanding our knowledge on the mechanisms of immune regulation and tolerance. Although whole exome and whole genome sequencing have been extremely useful in identifying novel causative genes underlying new phenotypes, these approaches are time-consuming and expensive. Patients with monogenic syndromes associated with autoimmunity require faster diagnostic tools to delineate therapeutic strategies and avoid organ damage. Since these PIDs present with severe life-threatening phenotypes, the need for a precise diagnosis in order to initiate appropriate patient management is necessary. More traditional approaches such as flow cytometry are therefore a valid option. Here, we review the application of flow cytometry and discuss the relevance of this powerful technique in diagnosing patients with PIDs presenting with immune dysregulation. In addition, flow cytometry represents a fast, robust, and sensitive approach that efficiently uncovers new immunopathological mechanisms underlying monogenic PIDs.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Síndromes de Imunodeficiência/diagnóstico , Animais , Autoimunidade , Humanos , Imunofenotipagem
20.
Immunol Res ; 67(4-5): 408-415, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31741236

RESUMO

The interleukin (IL)-12/interferon(IFN)γ axis plays an important role in the control of mycobacterial diseases as demonstrated by the increased susceptibility to mycobacterial species in patients with an inborn error of the IL-12-dependent IFNγ immunity. Here, we report a novel mutation in the IL-12Rß1 gene in a female Pakistani patient who was born in a consanguineous marriage and developed severe bacille Calmette-Guérin (BCG) infection and recurrent tuberculosis. After reviewing the patient's clinical records, she was investigated for IL-12/IFNγ defects using enzyme-linked immunosorbent assay (ELISA), flow cytometry, and DNA genetic Sanger sequencing. Quantification of secretory cytokines from the patient's peripheral blood mononuclear cells (PBMCs) revealed significantly reduced IFNγ production. Flow cytometric analysis revealed no surface expression of IL-12Rß1 on PHA-activated T lymphocytes. In addition, IL-12-induced impaired STAT4 phosphorylation in the patient's lymphocytes when compared with those from five healthy controls. The genetic analysis of IL-12Rß1 gene identified a novel nonsense mutation c.199G>T/p.E67* within exon 3, which encodes part of the cytokine-binding region (CBR). In silico analysis indicates that this novel nonsense mutation generates a truncated protein with an apparent inactivating effect. Our data expand the genetic spectrum of IL-12Rß1 deficiency. Moreover, our findings highlight the need for developing newborn screening for patients with primary immunodeficiency associated with mycobacterial infections in areas where BCG vaccination is mandatory in order to improve the treatment of patients, and consequently their quality of life.


Assuntos
Códon sem Sentido , Receptores de Interleucina-12 , Tuberculose , Adulto , Criança , Éxons , Feminino , Humanos , Fosforilação , Receptores de Interleucina-12/genética , Receptores de Interleucina-12/imunologia , Recidiva , Fator de Transcrição STAT4/genética , Fator de Transcrição STAT4/imunologia , Linfócitos T/imunologia , Linfócitos T/patologia , Tuberculose/genética , Tuberculose/imunologia , Tuberculose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA