Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Morphol ; 276(8): 991-1003, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24797516

RESUMO

The species of the family Goodeidae have evolved reproductive strategies involving intraovarian gestation, early evacuation of nearly yolk-exhausted embryos from the ovigerous tissue into the ovarian cavity, placental matrotrophy during intraluminal gestation, and the birth of highly developed fry. The inner ovarian lining becomes hypervascularized during gestational periods and functions as the maternal component of the placental association. Embryotrophic liquid is secreted by the inner ovarian epithelium into the ovarian cavity. Comparative electrophoretic analyses of embryotrophe and maternal blood serum provide evidence for the transfer of maternal serum proteins into the embryotrophe. Trophotaeniae, proctodaeal processes of the embryos, provide a surface for nutrient absorption. Endocytic activity was demonstrated by ingestion of unspecific tracer proteins in various species. Moreover, the trophotaenial absorptive cells (TACs) in Ameca splendens ingest various proteins or random copolymers conjugated to colloidal gold as well as radioiodinated proteins in a way that satisfies the criteria of receptor-mediated endocytosis. Several aminopeptidases (APs) on the surface of TACs were identified as protein binding sites as evidenced by inhibition of binding and uptake of marker proteins in the presence of AP substrates or AP inhibitors. Morphological adaptations of the embryonic circulatory system pertaining to nutrient and gas exchange were characterized. The embryonic epidermis comprises two layers of squamous cells closely underlain by a dense capillary net. Efficient gas exchange is facilitated by a thin embryotrophe-blood barrier of both the embryonic skin and the intraovarian lining.


Assuntos
Ciprinodontiformes/embriologia , Embrião não Mamífero/metabolismo , Animais , Transporte Biológico , Ciprinodontiformes/anatomia & histologia , Ciprinodontiformes/metabolismo , Embrião não Mamífero/anatomia & histologia , Feminino , Proteínas de Peixes/metabolismo
2.
J Exp Zool A Comp Exp Biol ; 299(2): 197-212, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12975808

RESUMO

In the goodeid placental analogue, trophotaeniae provide extraembryonic gut-derived exchange surfaces. Ameca splendens embryos possess endocytosing trophotaeniae that are capable of absorbing a dazzling array of proteinaceous substances. The iron core protein, native ferritin (NF), and several radioiodinated proteinaceous substances were used to study ligand and binding site pathways in the trophotaenial absorptive cells (TACs). Time sequence analysis of NF trafficking indicated an exclusively lysosomal pathway. Binding to TACs of NF was completely inhibitable by proteins containing multiple lysine residues such as apoferritin, bovine serum albumin (BSA), human transferrin (HTf), fetuin, hemoglobin, myoglobin, cytochrome c, ubiquitin, parvalbumin as well as the random copolymers, poly(Glu,Lys,Tyr)6:3:1 and poly(D-Glu,D-Lys)6:4. Peptide hormones and pepsin that contains only one lysine residue did not produce inhibitory effects. Radiolabels such as (125)I-BSA, (125)I-HTf and (125)I-poly(Glu,Lys,Tyr) bound to trophotaeniae in a specific saturable manner. Any two proteins were shown to hinder one another in getting hold of a binding site. Concentration-dependent (125)I-BSA binding and Scatchard analysis of the data revealed both low- and medium-affinity binding with apparent dissociation constants, K(d)s, of 3.4 x 10(-5) M and 2 x 10(-7) M, respectively. Binding of NF and radioiodinated proteins was inhibited in the presence of a large excess of L-Lys, D-Lys, and several dipeptides containing Lys. Both Ca(2+)-depletion and low pH dramatically reduced the TACs' capacity to bind proteins. The effects of acidotropic agents included a reversible loss of surface protein binding sites, tremendous vacuolation, and the arrest of lysosomal degradation. Collectively, present results demonstrate that TACs bind and absorb multiple proteinaceous substances through a mechanism satisfying the criteria of receptor-mediated endocytosis. It is concluded that scavenger protein binding sites are used to ingest proteins for lysosomal degradation, helping to meet the embryos' amino acid requirement.


Assuntos
Sistema Digestório/embriologia , Enterócitos/metabolismo , Peixes/embriologia , Peixes/metabolismo , Transporte Proteico/fisiologia , Receptores Imunológicos/metabolismo , Animais , Sítios de Ligação , Sistema Digestório/citologia , Sistema Digestório/metabolismo , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Endocitose/fisiologia , Enterócitos/citologia , Feminino , Lisossomos/metabolismo , Placentação/fisiologia , Receptores Depuradores , Trofoblastos/citologia , Trofoblastos/metabolismo
3.
J Exp Zool A Comp Exp Biol ; 299(2): 213-22, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12975809

RESUMO

Viviparity in goodeid teleosts is characterized by the elaboration of trophotaeniae, extraembryonic proctodaeal appendages facilitating maternal-embryonic nutrient transfer. The trophotaenial absorptive cells (TACs) express aminopeptidases (APs) such as APA, APN, gamma-glutamyltransferase (gamma-GT), dipeptidyl aminopeptidase (DAP) IV, and neutral endopeptidase (NEP) as inferred from the results of cleavage experiments with, respectively, Glu-alpha-(4M beta NA), Ala-(4M beta NA), Glu-gamma-(4M beta NA), Gly-Pro-(4M beta NA), and Gl-(Ala)(3)-(4M beta NA). Enzyme reaction product was localized to the apical and basolateral plasma membrane as well as to some intracellular compartments. In the accompanying report (Schindler, 2003) evidence is presented that the trophotaeniae of Ameca splendens embryos randomly, yet specifically, bind and ingest proteins as well as certain copolymers of amino acids. Present results demonstrate that endocytosis is significantly inhibitable by unspecific proteinase inhibitors, such as diisopropylphosphorofluoride, phenylmethanesulfonylfluoride, antipain, 1.10-phenanthroline, and dithiothreitol. The specific microbial AP inhibitors amastatin, bestatin, and phosphoramidon suppressed protein binding to TACs more effectively when added in combination than did either agent alone. Moreover, in the presence of 4M beta NA assay substrates of APs the capability of TACs to bind proteins was significantly reduced. Conversely, the rate at which 4M beta NA substrates were cleaved by trophotaenial APs was modified in the presence of proteins. Depending on protein concentrations the AP-catalyzed reactions either decreased or increased in velocity. Analysis of the enzyme kinetics by methods of linear transformation suggests that proteins bind to APs competitively, thereby adopting the role of enzyme inhibitors. On the other hand, protein binding to APs appears to be a signal to translocate enzymes from an internal pool to the surface membrane. In the presence of primaquine, the rate of AP-catalyzed cleavage of 4M beta NA substrates was significantly reduced. That can be put down to the fact that weak bases disrupt the recycling of endocytosed membrane constituents. In conclusion, there is evidence that APs in the trophotaenial placenta of A. splendens function as scavenger receptors mediating in the delivery of embryotrophic proteins for lysosomal degradation.


Assuntos
Aminopeptidases/metabolismo , Sistema Digestório/enzimologia , Endocitose/fisiologia , Enterócitos/enzimologia , Peixes/embriologia , Peixes/metabolismo , Animais , Sítios de Ligação , Sistema Digestório/citologia , Sistema Digestório/embriologia , Embrião não Mamífero/citologia , Embrião não Mamífero/enzimologia , Enterócitos/citologia , Feminino , Lisossomos/enzimologia , Troca Materno-Fetal/fisiologia , Placentação/fisiologia , Gravidez , Transporte Proteico/fisiologia , Trofoblastos/citologia , Trofoblastos/enzimologia
4.
J Morphol ; 198(3): 331-339, 1988 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29890789

RESUMO

Jenynsia lineata retains its embryos within the ovarian cavity for a prolonged gestation. In the absence of egg envelopes, maternal-embryonic transfer occurs through ovarian fluid across apposed epithelia, relatively lining the ovarian lumen and the surface of the embryos. There are no hypertrophied extraembryonic structures that could provide expanded exchange surfaces for the passage of nutrients beyond the 8-mm stage, but structural specializations of the ovary then form, and these may sustain embryogenesis. Outgrowths of the inner lining of the ovary, villi ovariales, enter the pharyngeal cavity of the embryos via an opercular cleft remaining from early stages of development, after depletion of yolk reserves, until shortly before term. The ovary and its villi are lined by a monolayer of squamous cells showing evidence of vesicular transport of macromolecular substances both on the apical surface and at the basolateral pole. It serves for transcellular passage of maternally derived substances rather than as a source of secretory products. Most adjacent cells interdigitate, and the epithelium is continuous except for few gaps at the villous tips, which allow paracellular passage of particulate matter. These epithelial cells contain abundant filaments, electron-dense granules within the cytoplasm and the nucleus, sparse elements of the rough endoplasmic reticulum, a Golgi apparatus, and different sorts of vacuoles. The capillaries in the intraovarian lining are spaced most densely at the ovarian wall, less so toward the tips of the villi. The villi ovariales contain a network of connective tissue that forms endotheliumlike septa, which divide the interior into numerous different-sized loculi.

5.
J Morphol ; 188(2): 203-224, 1986 May.
Artigo em Inglês | MEDLINE | ID: mdl-29966402

RESUMO

Scanning and transmission electron microscopy were used to examine the morphology of the perianal processes (trophotaeniae) of goodeid embryos (Girardinichthys viviparus) at two stages of gestation. The epithelial surface of trophotaeniae is composed of two cell types, one of which shows distinct features associated with absorptive activity. Such cells are characterized by microvilli, abundant mitochondria, and an agranular tubulolamellar network. Micropinocytosis at the apical surface is relatively rare. The brush border membranes contain high levels of alkaline phosphatase. The cells of the second type are the minor component of the trophotaenial epithelium. Their surface is distinct, due to the presence of microridges rather than microvilli. The reticulate arrangement of the cells gives rise to intercellular spaces which occasionally are very large. These interstices are populated with leukocytes. The histological appearance of these sections indicates that this tissue is involved in gas exchange. Embryos at very early stages of development possess similar epithelia which are differentiated to a lesser extent. The connective tissue in some parts of the processes shows structural modifications. It is densely packed with numerous leukocytes occupying the spaces between the cytyoplasmic ramifications of the stroma cells. Possible roles of the trophotaeniae in absorption, respiration, excretion, and the acquisition of immunity are discussed, and it is concluded that the perianal processes of the Goodeidae are more than just trophic embryonic structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA