Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(24): e202303912, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38319524

RESUMO

Adsorption of metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining the advantages of homogeneous and heterogeneous catalysis. To avoid the "surface trans-effect" a dome-shaped molybdenum(0) tricarbonyl complex supported by an tolylazacalix[3](2,6)pyridine ligand is synthesized. This vacuum-evaporable complex both activates CO and reacts with molecular oxygen (O2) to form a Mo(VI) trioxo complex which in turn is capable of catalytically mediating oxygen transfer. The molybdenum tricarbonyl- and trioxo complexes are investigated in the solid state, in homogeneous solution and on noble metal surfaces (Cu, Au) employing a range of spectroscopic and analytical methods.

2.
Dalton Trans ; 50(3): 1042-1052, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33367415

RESUMO

Transition metal complexes form the basis for small molecule activation and are relevant for electrocatalysis. To combine both approaches the attachment of homogeneous catalysts to metallic surfaces is of significant interest. Towards this goal a molybdenum tricarbonyl complex supported by a tripodal phosphine ligand was covalently bound to a triazatriangulene (TATA) platform via an acetylene unit and the resulting TATA-functionalised complex was deposited on a Au(111) surface. The corresponding self-assembled monolayer was characterised with scanning tunnelling microscopy (STM), X-ray photoelectron spectroscopy (XPS), and near-edge X-ray absorption fine structure (NEXAFS). The vibrational properties of the surface-adsorbed complexes were investigated with the help of infrared reflection absorption spectroscopy (IRRAS), and the frequency/intensity changes with respect to the bulk spectrum were analysed. A full vibrational analysis was performed with the help of DFT.

3.
Angew Chem Int Ed Engl ; 59(39): 17192-17196, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32524693

RESUMO

Light-induced transitions between the trans and cis isomer of triazatriangulenium-based azobenzene derivatives on Au(111) surfaces were observed directly by scanning tunneling microscopy, allowing atomic-scale studies of the photoisomerization kinetics. Although the azobenzene units in these adlayers are free-standing and spaced at uniform distances of 1.26 nm, their photoswitching depends on the isomeric state of the surrounding molecules and, specifically, is accelerated by neighboring cis isomers. These collective effects are supported by ab initio calculations indicating that the electronic excitation preferably localizes on the n-π* state of trans isomers with neighboring cis azobenzenes.

4.
Chemistry ; 26(2): 485-501, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-31660639

RESUMO

Self-assembled monolayers (SAMs) decorated with photoisomerizable azobenzene glycosides are useful tools for investigating the effect of ligand orientation on carbohydrate recognition. However, photoswitching of SAMs between two specific states is characterized by a limited capacity. The goal of this study is the improvement of photoswitchable azobenzene glyco-SAMs. Different concepts, in particular self-dilution and rigid biaryl backbones, have been investigated. The required SH-functionalized azobenzene glycoconjugates were synthesized through a modular approach, and the respective glyco-SAMs were fabricated on Au(111). Their photoswitching properties have been extensively investigated by applying a powerful set of methods (IRRAS, XPS, and NEXAFS). Indeed, the combination of tailor-made biaryl-azobenzene glycosides and suitable diluent molecules led to photoswitchable glyco-SAMs with a significantly enhanced and unprecedented switching capacity.

5.
Nat Nanotechnol ; 15(1): 18-21, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31873288

RESUMO

Molecular spin switches are attractive candidates for controlling the spin polarization developing at the interface between molecules and magnetic metal surfaces1,2, which is relevant for molecular spintronics devices3-5. However, so far, intrinsic spin switches such as spin-crossover complexes have suffered from fragmentation or loss of functionality following adsorption on metal surfaces, with rare exceptions6-9. Robust metal-organic platforms, on the other hand, rely on external axial ligands to induce spin switching10-14. Here we integrate a spin switching functionality into robust complexes, relying on the mechanical movement of an axial ligand strapped to the porphyrin ring. Reversible interlocked switching of spin and coordination, induced by electron injection, is demonstrated on Ag(111) for this class of compounds. The stability of the two spin and coordination states of the molecules exceeds days at 4 K. The potential applications of this switching concept go beyond the spin functionality, and may turn out to be useful for controlling the catalytic activity of surfaces15.

6.
Angew Chem Int Ed Engl ; 58(20): 6574-6578, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-30793824

RESUMO

We report on a very unusual case of surface catalysis involving azobenzenes in contact with a Au(111) surface. A rate acceleration of the cis-trans isomerization on gold up to a factor of 1300 compared to solution is observed. By using carefully designed molecular frameworks, the electronic coupling to the surface can be systematically tuned. The isomerization kinetics of molecules with very weak coupling to the metal is similar to that found in solution. For their counterparts with strong coupling, the relaxation rate is shown to depend on the spin-density distribution in the triplet states of the molecules. This suggests that an intersystem crossing is involved in the relaxation process. Aside from their impact on catalytic processes, these effects could be used to trigger reactions over long distances.

7.
Chemistry ; 24(42): 10732-10744, 2018 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-29693736

RESUMO

Activating small molecules with transition metal complexes adsorbed on metal surfaces is a novel approach combining aspects of homogeneous and heterogeneous catalysis. In order to study the influence of an Au(111) substrate on the activation of the small-molecule ligand carbon monoxide, a molybdenum tricarbonyl complex containing a PN3 P pincer ligand was synthesized and investigated in the bulk, in solution, and adsorbed on an Au(111) surface. By means of a platform approach, a perpendicular orientation of the molybdenum complex was achieved and confirmed by IRRAS and NEXAFS. By using vibrational spectroscopy (IR, Raman, IRRAS) coupled to DFT calculations, the influence of the metal substrate on the activation of the CO ligands bound to the molybdenum complex was determined. The electron-withdrawing behavior of gold causes an overall shift of the CO stretching vibrations to higher frequencies, which is partly compensated by dynamic charge transfer from the substrate to the molybdenum center, which increases its (dynamic) polarizability.

8.
Dalton Trans ; 45(37): 14801-13, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27603895

RESUMO

The syntheses of molybdenum dinitrogen complexes supported by the tridentate PEP ligands (E = N, P) prPP(Ph)P = (Ph2PCH2CH2CH2)2P(Ph), prPPHP = (Ph2PCH2CH2CH2)2PH, PN(Ph)P = (Ph2PCH2CH2)2N(Ph) and prPN(Ph)P = (Ph2PCH2CH2CH2)2N(Ph) are reported. Together with the coligand dmpm = (CH3)2PCH2P(CH3)2 dinitrogen complexes of the type [Mo(N2)(PEP)(dmpm)] are formed. The new systems are characterized by IR and NMR spectroscopy and compared with the literature-known complex [Mo(N2)(dpepp)(dmpm)] (1) (dpepp = PhP(CH2CH2PPh2)2). The consequences of the substitution of the central P-donor of dpepp by N and the replacement of its C2 by C3 linkages as well as the exchange of the EPh by an EH function are investigated with respect to the stability of the corresponding N2-complexes. Importantly, the activation of the N2 ligand drastically increases upon replacing the trans-phosphine with a trans-amine donor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA