Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37372987

RESUMO

The inositol triphosphate-associated proteins IRAG1 and IRAG2 are cGMP kinase substrate proteins that regulate intracellular Ca2+. Previously, IRAG1 was discovered as a 125 kDa membrane protein at the endoplasmic reticulum, which is associated with the intracellular Ca2+ channel IP3R-I and the PKGIß and inhibits IP3R-I upon PKGIß-mediated phosphorylation. IRAG2 is a 75 kDa membrane protein homolog of IRAG1 and was recently also determined as a PKGI substrate. Several (patho-)physiological functions of IRAG1 and IRAG2 were meanwhile elucidated in a variety of human and murine tissues, e.g., of IRAG1 in various smooth muscles, heart, platelets, and other blood cells, of IRAG2 in the pancreas, heart, platelets, and taste cells. Hence, lack of IRAG1 or IRAG2 leads to diverse phenotypes in these organs, e.g., smooth muscle and platelet disorders or secretory deficiency, respectively. This review aims to highlight the recent research regarding these two regulatory proteins to envision their molecular and (patho-)physiological tasks and to unravel their functional interplay as possible (patho-)physiological counterparts.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I , Proteínas de Membrana , Camundongos , Humanos , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Proteínas de Membrana/metabolismo , Músculo Liso/metabolismo , Plaquetas/metabolismo , Retículo Endoplasmático/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
2.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35742926

RESUMO

Several important and novel aspects regarding signaling by cGMP were reported in the various publications of this Special Issue [...].


Assuntos
GMP Cíclico , Transdução de Sinais , Óxido Nítrico
3.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743138

RESUMO

Inositol 1,4,5-triphosphate receptor-associated 2 (IRAG2) is a type II membrane protein located at the endoplasmic reticulum. It is a homologue of inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1), a substrate protein of cGMP-dependent protein kinase I (PKGI), and is among others expressed in platelets. Here, we studied if IRAG2 is also located in platelets and might be a substrate protein of PKGI. IRAG2 was detected in platelets of IRAG2-WT animals but not in those of IRAG2-KO animals. Next, we validated by co-immunoprecipitation studies that IRAG2 is associated with IP3R1-3. No direct stable interaction with PKGIß or with IRAG1 was observed. Phosphorylation of IRAG2 in murine platelets using a Ser/Thr-specific phospho-antibody was found in vitro and ex vivo upon cGMP stimulation. To gain insight into the function of IRAG2, platelet aggregation studies were performed using thrombin and collagen as agonists for treatment of isolated IRAG2-WT or IRAG2-KO platelets. Interestingly, platelet aggregation was reduced in the absence of IRAG2. Pretreatment of wild type or IRAG2-KO platelets with sodium nitroprusside (SNP) or 8-pCPT-cGMP revealed a further reduction in platelet aggregation in the absence of IRAG2. These results show that IRAG2 is a substrate of PKGI in murine platelets. Furthermore, our results indicate that IRAG2 is involved in the induction of thrombin- or collagen-induced platelet aggregation and that this effect is enhanced by cGMP-dependent phosphorylation of IRAG2. As IRAG1 was previously shown to inhibit platelet aggregation in a cGMP-dependent manner, it can be speculated that IRAG2 exerts an opposing function and might be an IRAG1 counterpart in murine platelets.


Assuntos
Plaquetas , Óxido Nítrico/metabolismo , Trombina , Animais , Plaquetas/metabolismo , Colágeno/metabolismo , GMP Cíclico/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Fosforilação , Agregação Plaquetária , Proteínas Quinases/metabolismo , Trombina/metabolismo
4.
Nat Cardiovasc Res ; 1(12): 1174-1186, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37484062

RESUMO

Variants in genes encoding the soluble guanylyl cyclase (sGC) in platelets are associated with coronary artery disease (CAD) risk. Here, by using histology, flow cytometry and intravital microscopy, we show that functional loss of sGC in platelets of atherosclerosis-prone Ldlr-/- mice contributes to atherosclerotic plaque formation, particularly via increasing in vivo leukocyte adhesion to atherosclerotic lesions. In vitro experiments revealed that supernatant from activated platelets lacking sGC promotes leukocyte adhesion to endothelial cells (ECs) by activating ECs. Profiling of platelet-released cytokines indicated that reduced platelet angiopoietin-1 release by sGC-depleted platelets, which was validated in isolated human platelets from carriers of GUCY1A1 risk alleles, enhances leukocyte adhesion to ECs. I mp or ta ntly, p ha rm ac ol ogical sGC stimulation increased platelet angiopoietin-1 release in vitro and reduced leukocyte recruitment and atherosclerotic plaque formation in atherosclerosis-prone Ldlr-/- mice. Therefore, pharmacological sGC stimulation might represent a potential therapeutic strategy to prevent and treat CAD.

5.
Br J Pharmacol ; 179(11): 2460-2475, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-33651375

RESUMO

BACKGROUND AND PURPOSE: Diabetic nephropathy is the leading cause for end-stage renal disease worldwide. Until now, there is no specific therapy available. Standard treatment with inhibitors of the renin-angiotensin system just slows down progression. However, targeting the NO/sGC/cGMP pathway using sGC activators does prevent kidney damage. Thus, we investigated if the sGC activator cinaciguat was beneficial in a mouse model of diabetic nephropathy, and we analysed how mesangial cells (MCs) were affected by related conditions in cell culture. EXPERIMENTAL APPROACH: Type 1 diabetes was induced with streptozotocin in wild-type and endothelial NOS knockout (eNOS KO) mice for 8 or 12 weeks.. Half of these mice received cinaciguat in their chow for the last 4 weeks. Kidneys from the diabetic mice were analysed with histochemical assays and by RT-PCR and western blotting. . Additionally, primary murine MCs under diabetic conditions were stimulated with 8-Br-cGMP or cinaciguat to activate the sGC/cGMP pathway. KEY RESULTS: The diabetic eNOS KO mice developed most characteristics of diabetic nephropathy, most marked at 12 weeks. Treatment with cinaciguat markedly improved GFR, serum creatinine, mesangial expansion and kidney fibrosis in these animals. We determined expression levels of related signalling proteins. Thrombospondin 1, a key mediator in kidney diseases, was strongly up-regulated under diabetic conditions and this increase was suppressed by activation of sGC/cGMP signalling. CONCLUSION AND IMPLICATIONS: Activation of the NO/sGC/PKG pathway with cinaciguat was beneficial in a model of diabetic nephropathy. Activators of sGC might be an appropriate therapy option in patients with Type 1 diabetes. LINKED ARTICLES: This article is part of a themed issue on cGMP Signalling in Cell Growth and Survival. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.11/issuetoc.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Nefropatias Diabéticas , Animais , Benzoatos , GMP Cíclico/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Nefropatias Diabéticas/tratamento farmacológico , Feminino , Guanilato Ciclase/metabolismo , Humanos , Rim/metabolismo , Masculino , Camundongos , Óxido Nítrico/metabolismo , Guanilil Ciclase Solúvel/metabolismo
6.
Int J Mol Sci ; 22(24)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34948204

RESUMO

The inositol 1,4,5-triphosphate receptor-associated 2 (IRAG2) is also known as Jaw1 or lymphoid-restricted membrane protein (LRMP) and shares homology with the inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1). IRAG1 interacts with inositol trisphosphate receptors (IP3 receptors /IP3R) via its coiled-coil domain and modulates Ca2+ release from intracellular stores. Due to the homology of IRAG1 and IRAG2, especially in its coiled-coil domain, it is possible that IRAG2 has similar interaction partners like IRAG1 and that IRAG2 also modulates intracellular Ca2+ signaling. In our study, we localized IRAG2 in pancreatic acinar cells of the exocrine pancreas, and we investigated the interaction of IRAG2 with IP3 receptors and its impact on intracellular Ca2+ signaling and exocrine pancreatic function, like amylase secretion. We detected the interaction of IRAG2 with different subtypes of IP3R and altered Ca2+ release in pancreatic acinar cells from mice lacking IRAG2. IRAG2 deficiency decreased basal levels of intracellular Ca2+, suggesting that IRAG2 leads to activation of IP3R under unstimulated basal conditions. Moreover, we observed that loss of IRAG2 impacts the secretion of amylase. Our data, therefore, suggest that IRAG2 modulates intracellular Ca2+ signaling, which regulates exocrine pancreatic function.


Assuntos
Células Acinares/metabolismo , Cálcio/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Proteínas de Membrana/metabolismo , Pâncreas Exócrino/metabolismo , Amilases/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout
7.
Int J Mol Sci ; 22(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34064290

RESUMO

Inositol 1,4,5-triphosphate receptor-associated cGMP kinase substrate 1 (IRAG1) is a substrate protein of the NO/cGMP-signaling pathway and forms a ternary complex with the cGMP-dependent protein kinase Iß (PKGIß) and the inositol triphosphate receptor I (IP3R-I). Functional studies about IRAG1 exhibited that IRAG1 is specifically phosphorylated by the PKGIß, regulating cGMP-mediated IP3-dependent Ca2+-release. IRAG1 is widely distributed in murine tissues, e.g., in large amounts in smooth muscle-containing tissues and platelets, but also in lower amounts, e.g., in the spleen. The NO/cGMP/PKGI signaling pathway is important in several organ systems. A loss of PKGI causes gastrointestinal disorders, anemia and splenomegaly. Due to the similar tissue distribution of the PKGIß to IRAG1, we investigated the pathophysiological functions of IRAG1 in this context. Global IRAG1-KO mice developed gastrointestinal bleeding, anemia-associated splenomegaly and iron deficiency. Additionally, Irag1-deficiency altered the protein levels of some cGMP/PKGI signaling proteins-particularly a strong decrease in the PKGIß-in the colon, spleen and stomach but did not change mRNA-expression of the corresponding genes. The present work showed that a loss of IRAG1 and the PKGIß/IRAG1 signaling has a crucial function in the development of gastrointestinal disorders and anemia-associated splenomegaly. Furthermore, global Irag1-deficient mice are possible in vivo model to investigate PKGIß protein functions.


Assuntos
Anemia/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Transdução de Sinais/fisiologia , Esplenomegalia/metabolismo , Animais , Cálcio/metabolismo , Colo/metabolismo , GMP Cíclico/metabolismo , Feminino , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Fosforilação/fisiologia , RNA Mensageiro/metabolismo , Baço/metabolismo , Estômago
8.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806499

RESUMO

Diabetic nephropathy (DN) ranks among the most detrimental long-term effects of diabetes, affecting more than 30% of all patients. Within the diseased kidney, intraglomerular mesangial cells play a key role in facilitating the pro-fibrotic turnover of extracellular matrix components and a progredient glomerular hyperproliferation. These pathological effects are in part caused by an impaired functionality of soluble guanylate cyclase (sGC) and a consequentially reduced synthesis of anti-fibrotic messenger 3',5'-cyclic guanosine monophosphate (cGMP). Bay 58-2667 (cinaciguat) is able to re-activate defective sGC; however, the drug suffers from poor bioavailability and its systemic administration is linked to adverse events such as severe hypotension, which can hamper the therapeutic effect. In this study, cinaciguat was therefore efficiently encapsulated into virus-mimetic nanoparticles (NPs) that are able to specifically target renal mesangial cells and therefore increase the intracellular drug accumulation. NP-assisted drug delivery thereby increased in vitro potency of cinaciguat-induced sGC stabilization and activation, as well as the related downstream signaling 4- to 5-fold. Additionally, administration of drug-loaded NPs provided a considerable suppression of the non-canonical transforming growth factor ß (TGF-ß) signaling pathway and the resulting pro-fibrotic remodeling by 50-100%, making the system a promising tool for a more refined therapy of DN and other related kidney pathologies.


Assuntos
Benzoatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Células Mesangiais/efeitos dos fármacos , Células Mesangiais/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Benzoatos/farmacocinética , Materiais Biomiméticos , Células Cultivadas , GMP Cíclico/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Fibrose , Humanos , Células Mesangiais/patologia , Modelos Biológicos , Nanopartículas/administração & dosagem , Ratos , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/metabolismo
9.
Psychiatry Res ; 300: 113901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33819866

RESUMO

Serum concentrations of asymmetric dimethylarginine (ADMA) in patients with schizophrenia, schizoaffective disorder, bipolar disorder, and depression were determined and compared to serum concentrations in healthy individuals. In all psychiatric diseases investigated, the ADMA concentration was elevated compared to the control group. Patients with recurrent depressive disorder had higher ADMA levels than patients with only one depressive episode. No differences between women and men were found. The elevated ADMA levels suggest that ADMA is involved in the pathophysiology of psychiatric diseases.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Arginina/análogos & derivados , Feminino , Humanos , Masculino
10.
Cells ; 9(10)2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33066124

RESUMO

PKGs are serine/threonine kinases. PKG1 has two isoforms-PKG1α and ß. Inositol trisphosphate receptor (IP3R)-associated cGMP-kinase substrate 1 (IRAG1) is a substrate for PKG1ß. IRAG1 is also known to further interact with IP3RI, which mediates intracellular Ca2+ release. However, the role of IRAG1 in PH is not known. Herein, WT and IRAG1 KO mice were kept under normoxic or hypoxic (10% O2) conditions for five weeks. Animals were evaluated for echocardiographic variables and went through right heart catheterization. Animals were further sacrificed to prepare lungs and right ventricular (RV) for immunostaining, western blotting, and pulmonary artery smooth muscle cell (PASMC) isolation. IRAG1 is expressed in PASMCs and downregulated under hypoxic conditions. Genetic deletion of IRAG1 leads to RV hypertrophy, increase in RV systolic pressure, and RV dysfunction in mice. Absence of IRAG1 in lung and RV have direct impacts on PKG1ß expression. Attenuated PKG1ß expression in IRAG1 KO mice further dysregulates other downstream candidates of PKG1ß in RV. IRAG1 KO mice develop PH spontaneously. Our results indicate that PKG1ß signaling via IRAG1 is essential for the homeostasis of PASMCs and RV. Disturbing this signaling complex by deleting IRAG1 can lead to RV dysfunction and development of PH in mice.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Hipertensão Pulmonar/metabolismo , Proteínas de Membrana/deficiência , Animais , Hipóxia Celular , Regulação para Baixo , Deleção de Genes , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Humanos , Hipertensão Pulmonar/fisiopatologia , Pulmão/patologia , Pulmão/fisiopatologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Knockout , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Remodelação Vascular
11.
Neurogastroenterol Motil ; 32(12): e13923, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573102

RESUMO

BACKGROUND: Achalasia is a condition characterized by impaired function of esophageal motility and incomplete relaxation of the lower esophagus sphincter, causing dysphagia and regurgitation. Rare cases of early-onset achalasia appear often in combination with further symptoms in a syndromic form as an inherited disease. METHODS: Whole genome sequencing was used to investigate the genetic basis of isolated achalasia in a family of Tunisian origin. We analyzed the function of the affected protein with immunofluorescence and affinity chromatography study. KEY RESULTS: A homozygous nonsense mutation was detected in murine retrovirus integration site 1 (MRVI1) gene (Human Genome Organisation Gene Nomenclature Committee (HGNC) approved gene symbol: IRAG1) encoding the inositol 1,4,5-trisphosphate receptor 1 (IP3 R1)-associated cyclic guanosine monophosphate (cGMP) kinase substrate (IRAG). Sanger sequencing confirmed co-segregation of the mutation with the disease. Sequencing of the entire MRVI1 gene in 35 additional patients with a syndromic form of achalasia did not uncover further cases with MRVI1 mutations. Immunofluorescence analysis of transfected COS7 cells revealed GFP-IRAG with the truncating mutation p.Arg112* (transcript variant 1) or p.Arg121* (transcript variant 2) to be mislocalized in the cytoplasm and the nucleus. Co-transfection with cGMP-dependent protein kinase 1 isoform ß (cGK1ß) depicted a partial mislocalization of cGK1ß due to mislocalized truncated IRAG. Isolation of protein complexes revealed that the truncation of this protein causes the loss of the interaction domain of IRAG with cGK1ß. CONCLUSIONS & INFERENCES: In individuals with an early onset of achalasia without further accompanying symptoms, MRVI1 mutations should be considered as the disease-causing defect.


Assuntos
Acalasia Esofágica/diagnóstico , Acalasia Esofágica/genética , Homozigoto , Proteínas de Membrana/genética , Mutação/genética , Fosfoproteínas/genética , Adolescente , Adulto , Animais , Células COS , Chlorocebus aethiops , Feminino , Humanos , Camundongos , Linhagem , Retroviridae/genética , Tunísia , Sequenciamento Completo do Genoma/métodos
12.
Front Pharmacol ; 10: 800, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31379575

RESUMO

Pharmacological inhibition of the renin-angiotensin-aldosterone system (RAAS) is, in combination with diuretics, the first-choice treatment for hypertension, although 10-20% of patients do not respond adequately. Next to the RAAS, the nitric oxide/cGMP/protein kinase G (PKG) system is the second fundamental blood pressure regulator. Whether both systems influence each other is not well-studied. It has been shown that nitric oxide (NO) supports renin recruitment via activation of soluble guanylate cyclase (sGC) and subsequent generation of cGMP. Whether this leads to an ensuing activation of PKGs in this context is not known. PKGIα, as well as PKGII, is expressed in renin-producing cells. Hence, we analyzed whether these enzymes play a role regarding renin synthesis, secretion, or recruitment. We generated renin-cell-specific PKGI-knockout mice and either stimulated or inhibited the renin system in these mice by salt diets. To exclude the possibility that one kinase isoform can compensate the lack of the other, we also studied double-knockout animals with a conditional knockout of PKGI in juxtaglomerular cells (JG cells) and a ubiquitous knockout of PKGII. We analyzed blood pressure, renin mRNA and renal renin protein content as well as plasma renin concentration. Furthermore, we stimulated the cGMP system in these mice using BAY 41-8543, an sGC stimulator, and examined renin regulation either after acute administration or after 7 days (application once daily). We did not reveal any striking differences regarding long-term renin regulation in the studied mouse models. Yet, when we studied the acute effect of BAY 41-8543 on renin secretion in isolated perfused kidneys as well as in living animals, we found that the administration of the substance led to a significant increase in plasma renin concentration in control animals. This effect was completely abolished in double-knockout animals. However, after 7 days of once daily application, we did not detect a persistent increase in renin mRNA or protein in any studied genotype. Therefore, we conclude that in mice, cGMP and PKG are involved in the acute regulation of renin release but have no influence on long-term renin adjustment.

13.
Mol Cell Endocrinol ; 487: 59-65, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30660699

RESUMO

Fibrosis is associated with accumulation of excess fibrillar collagen, leading to tissue dysfunction. Numerous processes, including inflammation, myofibroblast activation, and endothelial-to-mesenchymal transition, play a role in the establishment and progression of fibrosis. Relaxin is a peptide hormone with well-known antifibrotic properties that result from its action on numerous cellular targets to reduce fibrosis. Relaxin activates multiple signal transduction pathways as a mechanism to suppress inflammation and myofibroblast activation in fibrosis. In this review, the general mechanisms underlying fibrotic diseases are described, along with the current state of knowledge regarding cellular targets of relaxin. Finally, an overview is presented summarizing the signaling pathways activated by relaxin and other relaxin family peptide receptor agonists to suppress fibrosis.


Assuntos
Matriz Extracelular/metabolismo , Relaxina/metabolismo , Transdução de Sinais , Animais , Fibrose , Humanos , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Óxido Nítrico/metabolismo
14.
J Pharm Biomed Anal ; 163: 34-38, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30278324

RESUMO

Ceftolozane/tazobactam is a new cephalosporin/beta-lactamase inhibitor combination. An HPLC-UV method is described for the determination of total and free ceftolozane and tazobactam in human plasma and in microdialysate of subcutaneous tissue, respectively. Separation was performed using a reversed-phase column with phosphate buffer/acetonitrile as eluent and photometric detection at 260 nm (ceftolozane) or 220 nm (tazobactam). Linearity has been shown down to ceftolozane/tazobactam 0.1/0.05 mg/L in plasma and 0.03/0.015 mg/L in saline, respectively. The plasma protein binding of both drugs as determined by ultrafiltration was less than 10%. Temperature, pH or relative centrifugation force (up to 3000 x g) had no significant impact on the protein binding. The method was applied to the determination of ceftolozane and tazobactam in plasma and interstitial fluid of healthy volunteers following intravenous infusion of ceftolozane/tazobactam 1.0/0.5 g.


Assuntos
Antibacterianos/sangue , Cefalosporinas/sangue , Líquido Extracelular/química , Tazobactam/sangue , Antibacterianos/administração & dosagem , Antibacterianos/farmacocinética , Cefalosporinas/administração & dosagem , Cefalosporinas/farmacocinética , Fracionamento Químico/instrumentação , Fracionamento Químico/métodos , Cromatografia Líquida de Alta Pressão/instrumentação , Cromatografia Líquida de Alta Pressão/métodos , Voluntários Saudáveis , Humanos , Infusões Intravenosas , Espectrofotometria Ultravioleta/instrumentação , Espectrofotometria Ultravioleta/métodos , Tazobactam/administração & dosagem , Tazobactam/farmacocinética
15.
Mol Pain ; 14: 1744806918796409, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30152261

RESUMO

cGMP-dependent kinase-I (cGKI) is known to regulate spinal pain processing. This enzyme consists of two isoforms (cGKIα and cGKIß) that show distinct substrate specificity and tissue distribution. It has long been believed that the α isoform is exclusively expressed in the adult dorsal root ganglion. The aim of the present study was to reexamine the expression of cGKI isoforms in the adult mouse dorsal root ganglion using isoform-specific cGKI antibodies whose specificities had been validated in the previous studies. Immunoblot and immunohistochemical analyses revealed the presence of both isoforms in the dorsal root ganglion. Moreover, cGKIα was found to be mainly expressed within the cytoplasm of small- to medium-sized peptidergic and nonpeptidegic C-fibers, whereas cGKIß was located within the nuclei of a wide range of dorsal root ganglion neurons. In addition, glutamine synthetase-positive satellite glial cells expressed both isoforms to varying degrees. Finally, using an experimental model for neuropathic pain produced by L5 spinal nerve transection, we found that cGKIα expression was downregulated in the injured, but not in the uninjured, dorsal root ganglion. In contrast, cGKIß expression was upregulated in both the injured and uninjured dorsal root ganglions. Also, injury-induced cGKIß upregulation was found to occur in small-to-medium-diameter dorsal root ganglion neurons. These data thus demonstrate the existence of two differently distributed cGKI isoforms in the dorsal root ganglion, and may provide insight into the cellular and molecular mechanisms of pain.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica/fisiologia , Neuralgia/patologia , Isoformas de Proteínas/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Modelos Animais de Doenças , Glutamato-Amônia Ligase/metabolismo , Lectinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas/patologia , Proteínas do Tecido Nervoso/metabolismo
16.
Int J Mol Sci ; 19(8)2018 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049956

RESUMO

Dysfunctions of NO-cGMP signaling have been implicated in various neurological disorders. We have studied the potential crosstalk of cGMP and Ca2+ signaling in cerebellar granule neurons (CGNs) by simultaneous real-time imaging of these second messengers in living cells. The NO donor DEA/NO evoked cGMP signals in the granule cell layer of acute cerebellar slices from transgenic mice expressing a cGMP sensor protein. cGMP and Ca2+ dynamics were visualized in individual CGNs in primary cultures prepared from 7-day-old cGMP sensor mice. DEA/NO increased the intracellular cGMP concentration and augmented glutamate-induced Ca2+ transients. These effects of DEA/NO were absent in CGNs isolated from knockout mice lacking NO-sensitive guanylyl cyclase. Furthermore, application of the cGMP analogues 8-Br-cGMP and 8-pCPT-cGMP, which activate cGMP effector proteins such as cyclic nucleotide-gated cation channels and cGMP-dependent protein kinases (cGKs), also potentiated glutamate-induced Ca2+ transients. Western blot analysis failed to detect cGK type I or II in our primary CGNs. The addition of phosphodiesterase (PDE) inhibitors during cGMP imaging showed that CGNs degrade cGMP mainly via Zaprinast-sensitive PDEs, most likely PDE5 and/or PDE10, but not via PDE1, 2, or 3. In sum, these data delineate a cGK-independent NO-cGMP signaling cascade that increases glutamate-induced Ca2+ signaling in CGNs. This cGMP⁻Ca2+ crosstalk likely affects neurotransmitter-stimulated functions of CGNs.


Assuntos
Sinalização do Cálcio , Cerebelo/citologia , GMP Cíclico/metabolismo , Ácido Glutâmico/metabolismo , Neurônios/citologia , Óxido Nítrico/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Cerebelo/metabolismo , GMP Cíclico/análogos & derivados , Transferência Ressonante de Energia de Fluorescência , Guanilato Ciclase/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Imagem Óptica , Tionucleotídeos/metabolismo
17.
Int J Mol Sci ; 19(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649180

RESUMO

Nitric oxide (NO/cyclic guanosine monophosphate (cGMP)-regulated cellular mechanisms are involved in a variety of (patho-) physiological processes. One of the main effector molecules in this system, proteinkinase G (PKG), serves as a molecular switch by phosphorylating different target proteins and thereby turning them on or off. To date, only a few interaction partners of PKG have been described although the identification of protein-protein interactions (PPI) is indispensable for the understanding of cellular processes and diseases. Conventionally used methods to detect PPIs exhibit several disadvantages, e.g., co-immunoprecipitations, which depend on suitable high-affinity antibodies. Therefore, we established a cell-based protein-fragment complementation assay (PCA) for the identification of PKG target proteins. Here, a reporter protein (click beetle luciferase) is split into two fragments and fused to two different possible interaction partners. If interaction occurs, the reporter protein is functionally complemented and the catalyzed reaction can then be quantitatively measured. By using this technique, we confirmed the regulator of G-Protein signaling 2 (RGS2) as an interaction partner of PKGIα (a PKG-isoform) following stimulation with 8-Br-cGMP and 8-pCPT-cGMP. Hence, our results support the conclusion that the established approach could serve as a novel tool for the rapid, easy and cost-efficient detection of novel PKG target proteins.


Assuntos
Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Luciferases/metabolismo , Mapeamento de Interação de Proteínas/métodos , Proteínas RGS/metabolismo , Animais , Células COS , Chlorocebus aethiops , GMP Cíclico/metabolismo , Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Fosforilação
18.
J Pharm Sci ; 107(2): 739-744, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28927988

RESUMO

Tigecycline, a tetracycline derivative, shows atypical plasma protein binding behavior. The unbound fraction decreases with increasing concentration at therapeutic concentrations. Moreover, uncertainty exists about the magnitude of tigecyline's protein binding in man. Unbound fractions between 2.5% and 35% have been reported in plasma from healthy volunteers, and between 25% and 100% in patients, respectively. In the present study, the protein binding of tigecycline has been investigated by ultrafiltration using different experimental conditions. Whereas temperature had only a marginal influence, the unbound fraction at 0.3/3.0 mg/L was low at pH 8.2 (9.4%/1.9%) or in unbuffered pooled plasma (6.3%/1.2%), compared with plasma buffered with HEPES to pH 7.4 (65.9%/39.7%). In experiments with phosphate buffer and EDTA, the concentration dependency was markedly attenuated or abolished, which is compatible with a cooperative binding mechanism involving divalent cations such as calcium. The unbound fraction in clinical plasma samples from patients treated with tigecycline was determined to 66.3 ± 13.7% at concentrations <0.3 mg/L compared with 41.3 ± 16.0% at >1 to <5 mg/L. To summarize, tigecycline appears to be only moderately bound to plasma proteins as determined by ultrafiltration, when a physiological pH is maintained.


Assuntos
Minociclina/análogos & derivados , Plasma/metabolismo , Ligação Proteica/fisiologia , Proteínas Sanguíneas/metabolismo , Humanos , Minociclina/metabolismo , Tigeciclina , Ultrafiltração/métodos
19.
Naunyn Schmiedebergs Arch Pharmacol ; 390(9): 939-948, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28660304

RESUMO

Renal fibrosis is an important factor for end-stage renal failure. However, only few therapeutic options for its treatment are established. Zaprinast, a phosphodiesterase 5 inhibitor, and serelaxin, the recombinant form of the naturally occurring hormone relaxin, are differently acting modulators of cyclic guanosine monophosphate (cGMP) signaling. Both agents enhance cGMP availability in kidney tissue. These substances alone or in combination might interfere with the development of kidney fibrosis. Therefore, we compared the effects of combination therapy with the effects of monotherapy on renal fibrosis. Renal fibrosis was induced by unilateral ureteral obstruction (UUO) for 7 days in wild-type (WT) and cGKI knockout (KO) mice. Renal antifibrotic effects were assessed after 7 days. In WT, zaprinast and the combination of zaprinast and serelaxin significantly reduced renal interstitial fibrosis assessed by α-SMA, fibronectin, collagen1A1, and gelatinases (MMP2 and MMP9). Intriguingly in cGKI-KO, mRNA and protein expression of fibronectin and collagen1A1 were reduced by zaprinast, in contrast to serelaxin. Gelatinases are not regulated by zaprinast. Although both substances showed similar antifibrotic properties in WT, they distinguished in their effect mechanisms. In contrast to serelaxin which acts both on Smad2 and Erk1, zaprinast did not significantly diminish Erk1/2 phosphorylation. Interestingly, the combination of serelaxin/zaprinast achieved no additive antifibrotic effects compared to the monotherapy. Due to antifibrotic effects of zaprinast in cGKI-KO, we hypothesize that additional cGKI-independent mechanisms are supposed for antifibrotic signaling of zaprinast.


Assuntos
Proteína Quinase Dependente de GMP Cíclico Tipo I/metabolismo , GMP Cíclico/metabolismo , Nefropatias/prevenção & controle , Purinonas/farmacologia , Relaxina/farmacologia , Animais , Proteína Quinase Dependente de GMP Cíclico Tipo I/genética , Quimioterapia Combinada , Fibrose , Rim/efeitos dos fármacos , Rim/patologia , Nefropatias/patologia , Camundongos , Camundongos Knockout , Inibidores da Fosfodiesterase 5/administração & dosagem , Inibidores da Fosfodiesterase 5/farmacologia , Purinonas/administração & dosagem , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/farmacologia , Relaxina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Obstrução Ureteral/complicações
20.
FEBS Open Bio ; 7(4): 550-561, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28396839

RESUMO

Agents that enhance production of nitric oxide (NO) and cyclic guanosine monophosphate (cGMP) ameliorate the progression of renal fibrosis. However, the molecular mechanism of this process is not fully understood. We hypothesize that the antifibrotic effects of cGMP and cGMP-dependent kinase I (cGKI) are mediated via regulation of the TGFß signalling pathway, both via ERK and the Smad-dependent route. Kidney fibrosis was induced by unilateral ureter obstruction (UUO) in wild-type and cGKI-deficient (cGKI-KO) mice. The cGMP/cGKI signalling pathway was activated by application of the soluble guanylate cyclase (sGC) stimulator BAY 41-8543 (BAY), beginning 1 day after UUO. After 7 days, the antifibrotic effects of BAY were analysed by measuring mRNA and protein expression of characteristic fibrotic biomarkers. The effects of cGMP/TGFß on cultured fibroblasts were also analysed in vitro. BAY application influenced the activity of the extracellular matrix (ECM)-degrading matrix metalloproteases (MMP2 and MMP9) and their inhibitor tissue inhibitors of metalloproteinase-1, the secretion of cytokines (e.g. IL-6) and the expression pattern of ECM proteins (e.g. collagen, fibronectin) and profibrotic mediators (e.g. connective tissue growth factors and plasminogen-activator inhibitor-1). Activation of the cGMP/cGKI signalling pathway showed protective effects against fibrosis which were mediated by inhibition of P-Erk1/2 and translocation of P-smad3. The elucidation of these signalling mechanisms might support the development of new therapeutic options regarding cGMP/cGKI-mediated antifibrotic actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA