Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(42): 15904-15913, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842867

RESUMO

Recent studies in aquatic environments have indicated that microbial methane production is not limited to strictly anoxic conditions and is widespread in the oxic water column. Based on recent investigations proposing linkage between the microbial turnover of methylphosphonate (MPn) and the widespread methane oversaturation in surface waters, we conducted an MPn/13C-MPn tracer approach that combines liquid chromatography-mass spectrometry and gas chromatography-stable isotope ratio mass spectrometry to assess concentrations of the MPn tracer and its contribution to oxic methane formation. In our study, conducted during summer 2020 in the Baltic Sea, we show that MPn is a potent methanogenic substrate in the surface water. However, we found that MPn was produced within the surface and subthermocline water bodies and that its turnover was not limited to the phosphorus-stressed and cyanobacteria-rich surface water. However, our study revealed that most of the MPn was probably degraded via alternative pathways, not releasing methane. Our assessment indicates that the contribution of the MPn degradation pathway only contributed marginally to oxic methane production at the study site in the Baltic Sea and that a variety of methanogenic pathways are probably responsible for the surface-water methane enrichments.


Assuntos
Cianobactérias , Euryarchaeota , Compostos Organofosforados , Cianobactérias/metabolismo , Euryarchaeota/metabolismo , Água , Metano
2.
PLoS One ; 15(6): e0234110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32530916

RESUMO

Sediments from stratified marine environments often show an enhanced preservation of organic matter (OM) which is attributed to the limitation, or absence, of oxygen in the bottom waters and surface sediments. Yet there is still a limited knowledge about the changes that the associated biomarker signals undergo in the different parts of a stratified environment, and as to which extent the situation in the productive upper parts of the water column is eventually reflected in the sedimentary record. To better understand these processes we studied particulate matter samples from the stratified, partly anoxic Eastern Gotland Basin (EGB, Central Baltic Sea) during a strong cyanobacterial bloom in August 2016. Endmember samples representing the main biomass producers within the phytoplankton (cyanobacteria) and mesozooplankton (copepods) were obtained from different levels of the water column. Major extractable lipids (fatty acids, n-alcohols, sterols, and selected hydrocarbons) were analysed from the same materials and compared to samples cored from the underlying surface sediments (0-12 cm). Given the annually recurring phenomenon of cyanobacterial blooms we anticipated to find a considerable lipid footprint of the major primary producers in the sedimentary record of the EGB. Unexpectedly, however, lipids in the surface sediments largely derived from the storage lipids (mainly wax esters) of the copepod Pseudocalanus spp. which thrived in deeper, more saline and oxygen-depleted waters. Carbon number and unsaturation patterns suggest that the component n-alcohols of these wax esters are transformed into the corresponding n-fatty acids prior to further degradation in the sediment. In the EGB deposits, most of the plankton-derived lipids studied appear to be degraded on a time scale of decades. In terms of relative abundances, long-chain n-alkyl lipids and C29 sterols from terrestrial plant sources instead become predominant in the deeper sediment layers. Likewise, higher stanol/sterol ratios of C27-sterols vs. C29-sterols indicate a more intense biodegradation of planktonic OM as compared to terrestrial OM. Our observations indicate that primary produced particulate OM is heavily modified by mesozooplankton grazing. This overprint adds on the influence of heterotrophic microorganisms and, in the sediment, preferential preservation of terrestrial biomarkers. Taken together, these factors result in a major decoupling of the biomarker signals between the productive upper mixed layer and the oxygen-depleted bottom waters and sediments of the EGB.


Assuntos
Biomarcadores/análise , Sedimentos Geológicos/análise , Lipídeos/análise , Zooplâncton/metabolismo , Animais , Países Bálticos , Copépodes/crescimento & desenvolvimento , Copépodes/metabolismo , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/metabolismo , Ácidos Graxos/análise , Cromatografia Gasosa-Espectrometria de Massas , Hidrocarbonetos/análise , Esteróis/análise , Poluentes Químicos da Água/análise , Zooplâncton/crescimento & desenvolvimento
3.
Sci Rep ; 10(1): 4682, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170164

RESUMO

Benthic microorganisms transported into the water column potentially influence biogeochemical cycles and the pelagic food web structure. In the present study six gas-releasing vent sites in the Coal Oil Point seep field (California) were investigated, and the dislocation of microorganisms from the sediment into the water column via gas bubbles released from the seabed was documented. It was found that the methanotrophs transport efficiency was dependent on the volumetric gas flow, with the highest transport rate of 22.7 × 103 cells mLgas-1 at a volumetric gas flow of 0.07 mLgas s-1, and the lowest rate of 0.2 × 103 cells mLgas-1 at a gas flow of 2.2 mLgas s-1. A simple budget approach showed that this bubble-mediated transport has the potential to maintain a relevant part of the water-column methanotrophs in the seep field. The bubble-mediated link between the benthic and pelagic environment was further supported by genetic analyses, indicating a transportation of methanotrophs of the family Methylomonaceae and oil degrading bacteria of the genus Cycloclasticus from the sediment into the water column. These findings demonstrate that the bubble-mediated transport of microorganisms influences the pelagic microbial abundance and community composition at gas-releasing seep sites.


Assuntos
Sedimentos Geológicos/microbiologia , Metano , Microbiota , Microbiologia da Água , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Água Subterrânea/análise , Água Subterrânea/química , Água Subterrânea/microbiologia , Metano/química , Metano/metabolismo
4.
Environ Sci Technol ; 53(12): 6869-6876, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31117528

RESUMO

In marine systems, the loss of nitrogen caused by denitrification in oxygen-deficient zones is balanced by nitrogen fixation mediated by cyanobacteria, which may form extensive blooms in surface waters. In this study, by determining the concentration ratio of nitrogen (N2) and argon (Ar) in air equilibrated with surface water, we were able to detect changes in the N2 concentration attributable to N2 fixation. For this purpose, surface water was pumped continuously into a spray-type equilibrator while the air in the equilibrator's headspace was analyzed by mass spectrometry. After laboratory tests and model analysis to evaluate the sensitivity of our N2/Ar approach, feasibility studies were conducted in the central Baltic Sea in the summer of 2015 during the development of a cyanobacterial bloom. Our results showed that N2 deficits accumulated during periods of low wind and increasing surface water temperatures. A comparison of our results with the N2 deficits calculated from changes in the partial pressure of carbon dioxide in surface water indicated a similar trend. By demonstrating the ability of the N2/Ar approach to resolve N2 deficits in surface water caused by N2 fixation, our study contributes to assessments of the N2 fixation efficiency of cyanobacterial blooms.


Assuntos
Cianobactérias , Fixação de Nitrogênio , Argônio , Países Bálticos , Nitrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA