Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(9): 6181-6187, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39096318

RESUMO

Controlling the assembly of high-order structures is central to soft-matter and biomaterial engineering. Angle-resolved linear dichroism can probe the ordering of chiral collagen molecules in the dense state. Collagen triple helices were aligned by solvent evaporation. Their ordering gives a strong linear dichroism (LD) that changes sign and intensity with varying sample orientations with respect to the beam linear polarization. Being complementary to circular dichroism, which probes the structure of chiral (bio)molecules, LD can shift from the molecular to the supramolecular scale and from the investigation of the conformation to interactions. Supported by multiphoton microscopy and X-ray scattering, we show that LD provides a straightforward route to probe collagen alignment, determine the packing density, and monitor denaturation. This approach could be adapted to any assembly of chiral (bio)macromolecules, with key advantages in detecting large-scale assemblies with high specificity to aligned and chiral molecules and improved sensitivity compared to conventional techniques.


Assuntos
Materiais Biocompatíveis , Dicroísmo Circular , Colágeno , Materiais Biocompatíveis/química , Colágeno/química , Dicroísmo Circular/métodos , Animais , Difração de Raios X/métodos
2.
Res Sq ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149507

RESUMO

Purpose: There are challenges in understanding the biomechanics of the human middle ear, and established methods for studying this system show significant limitations. In this study, we evaluate a novel dynamic imaging technique based on synchrotron X-ray microtomography designed to assess the biomechanical properties of the human middle ear by comparing it to laser-Doppler vibrometry (LDV). Methods: We examined three fresh-frozen temporal bones (TB) using dynamic synchrotron-based X-ray microtomography for 256 Hz and 512 Hz, stimulated at 110 dB and 120 dB SPL. In addition, we performed measurements on these TBs using 1D LDV, a well-established method. Results: The normalized displacement values (µm/Pa) at the umbo and the posterior crus of the stapes are consistent or within 5-10 dB differences between all LDV and dynamic microtomography measurements and previously reported literature references. In general, the overall behavior is similar between the two measurement techniques. Conclusion: In conclusion, our results demonstrate the suitability of dynamic synchrotron-based X-ray microtomography in studying the middle ear's biomechanics. However, this study shows that better standardization regarding acoustic stimulation and measurement points is needed to better compare the two measurement techniques.

3.
Sci Rep ; 14(1): 18498, 2024 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-39122776

RESUMO

The auditory ossicles amplify and transmit sound from the environment to the inner ear. The distribution of bone mineral density is crucial for the proper functioning of sound transmission as the ossicles are suspended in an air-filled chamber. However, little is known about the distribution of bone mineral density along the human ossicular chain and within individual ossicles. To investigate this, we analyzed fresh-frozen human specimens using synchrotron-based phase-contrast microtomography. In addition, we analyzed the volume and porosity of the ossicles. The porosity for the auditory ossicles lies, on average, between 1.92% and 9.85%. The average volume for the mallei is 13.85 ± 2.15 mm3, for the incudes 17.62 ± 4.05 mm3 and 1.24 ± 0.29 mm3 for the stapedes. The bone density distribution showed a similar pattern through all samples. In particular, we found high bone mineralization spots on the anterior crus of the stapes, its footplate, and along areas that are crucial for the transmission of sound. We could also see a correlation between low bone mineral density and holey areas where the bone is only very thin or missing. Our study identified a similar pattern of bone density distribution within all samples: regions exposed to lower forces generally show higher bone density. Further, we observed that the stapes shows high bone mineral density along the anterior crus and its footplate, which may indicate its importance in transmitting sound waves to the inner ear.


Assuntos
Densidade Óssea , Ossículos da Orelha , Síncrotrons , Microtomografia por Raio-X , Humanos , Ossículos da Orelha/diagnóstico por imagem , Ossículos da Orelha/fisiologia , Ossículos da Orelha/anatomia & histologia , Microtomografia por Raio-X/métodos , Porosidade , Feminino , Idoso , Masculino , Pessoa de Meia-Idade , Estribo/fisiologia , Estribo/diagnóstico por imagem
4.
Commun Biol ; 7(1): 157, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326549

RESUMO

The characterization of the vibrations of the middle ear ossicles during sound transmission is a focal point in clinical research. However, the small size of the structures, their micrometer-scale movement, and the deep-seated position of the middle ear within the temporal bone make these types of measurements extremely challenging. In this work, dynamic synchrotron-based X-ray phase-contrast microtomography is used on acoustically stimulated intact human ears, allowing for the three-dimensional visualization of entire human eardrums and ossicular chains in motion. A post-gating algorithm is used to temporally resolve the fast micromotions at 128 Hz, coupled with a high-throughput pipeline to process the large tomographic datasets. Seven ex-vivo fresh-frozen human temporal bones in healthy conditions are studied, and the rigid body motions of the ossicles are quantitatively delineated. Clinically relevant regions of the ossicular chain are tracked in 3D, and the amplitudes of their displacement are computed for two acoustic stimuli.


Assuntos
Imageamento Tridimensional , Síncrotrons , Humanos , Raios X , Orelha Média/diagnóstico por imagem , Ossículos da Orelha/diagnóstico por imagem
5.
Biomed Opt Express ; 12(7): 4163-4178, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34457406

RESUMO

The human cornea is mainly composed of collagen fibrils aligned together within stacked lamellae. This lamellar structure can be affected in pathologies such as keratoconus, which is characterized by progressive corneal thinning and local steepening. In this study, we use polarization-resolved second harmonic generation (P-SHG) microscopy to characterize 8 control and 6 keratoconic human corneas. Automated processing of P-SHG images of transverse sections provides the collagen orientation in every pixel with sub-micrometer resolution. Series of P-SHG images recorded in the most anterior region of the stroma evidence sutural lamellae inclined at 22° ± 5° to the corneal surface, but show no significant difference between control and keratoconic corneas. In contrast, series of P-SHG images acquired along the full thickness of the stroma show a loss of order in the lamellar structure of keratoconic corneas, in agreement with their defective mechanical properties. This structural difference is analyzed quantitatively by computing the entropy and the orientation index of the collagen orientation distribution and significant differences are obtained along the full thickness of the stroma. This study shows that P-SHG is an effective tool for automatic quantitative analysis of structural defects of human corneas and should be applied to other collagen-rich tissues.

6.
Sci Adv ; 7(29)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34272247

RESUMO

Nondestructive and noninvasive investigation techniques are highly sought-after to establish the degradation state of historical parchments, which is up to now assessed by thermal techniques that are invasive and destructive. We show that advanced nonlinear optical (NLO) microscopy enables quantitative in situ mapping of parchment degradation at the micrometer scale. We introduce two parameters that are sensitive to different degradation stages: the ratio of two-photon excited fluorescence to second harmonic generation (SHG) signals probes severe degradation, while the anisotropy parameter extracted from polarization-resolved SHG measurements is sensitive to early degradation. This approach is first validated by comparing NLO quantitative parameters to thermal measurements on artificially altered contemporary parchments. We then analyze invaluable parchments from the Middle Ages and show that we can map their conservation state and assess the impact of a restoration process. NLO quantitative microscopy should therefore help to identify parchments most at risk and optimize restoration methods.

7.
Opt Express ; 27(16): 22685-22699, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510554

RESUMO

Second harmonic generation (SHG) enables in situ imaging of fibrillar collagen architecture in connective tissues. Recently, Circular Dichroism SHG (CD-SHG) microscopy has been implemented to take advantage of collagen chirality to improve 3D visualization. It measures the normalized difference in the SHG signal obtained upon excitation by left versus right circular polarizations. However, CD-SHG signal is not well characterized yet, and quite different CD-SHG values are reported in the literature. Here, we identify two major artifacts that may occur in CD-SHG experiments and we demonstrate that thorough optimization and calibration of the experimental setup are required for CD-SHG imaging. Notably it requires a careful calibration of the incident circular polarizations and a perfect mechanical stabilization of the microscope stage. Finally, we successfully record CD-SHG images in human cornea sections and confirm that this technique efficiently reveals collagen fibrils oriented out of the focal plane.


Assuntos
Artefatos , Dicroísmo Circular , Colágeno/química , Imageamento Tridimensional , Animais , Córnea/anatomia & histologia , Humanos , Movimento , Ratos , Imagem com Lapso de Tempo
8.
Biomed Opt Express ; 10(8): 3938-3952, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31452986

RESUMO

Conventional second harmonic generation (SHG) microscopy might not clearly reveal the structure of complex samples if the interference between all scatterers in the focal volume results in artefactual patterns. We report here the use of interferometric second harmonic generation (I-SHG) microscopy to efficiently remove these artifacts from SHG images. Interfaces between two regions of opposite polarity are considered because they are known to produce imaging artifacts in muscle for instance. As a model system, such interfaces are first studied in periodically-poled lithium niobate (PPLN), where an artefactual incoherent SH signal is obtained because of irregularities at the interfaces, that overshadow the sought-after coherent contribution. Using I-SHG allows to remove the incoherent part completely without any spatial filtering. Second, I-SHG is also proven to resolve the double-band pattern expected in muscle where standard SHG exhibits in some regions artefactual single-band patterns. In addition to removing the artifacts at the interfaces between antiparallel domains in both structures (PPLN and muscle), I-SHG also increases their visibility by up to a factor of 5. This demonstrates that I-SHG is a powerful technique to image biological samples at enhanced contrast while suppressing artifacts.

9.
J Biophotonics ; 12(5): e201800336, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30604478

RESUMO

The mechanical properties of biological tissues are strongly correlated to the specific distribution of their collagen fibers. Monitoring the dynamic reorganization of the collagen network during mechanical stretching is however a technical challenge, because it requires mapping orientation of collagen fibers in a thick and deforming sample. In this work, a fast polarization-resolved second harmonic generation microscope is implemented to map collagen orientation during mechanical assays. This system is based on line-to-line switching of polarization using an electro-optical modulator and works in epi-detection geometry. After proper calibration, it successfully highlights the collagen dynamic alignment along the traction direction in ex vivo murine skin dermis. This microstructure reorganization is quantified by the entropy of the collagen orientation distribution as a function of the stretch ratio. It exhibits a linear behavior, whose slope is measured with a good accuracy. This approach can be generalized to probe a variety of dynamic processes in thick tissues.


Assuntos
Colágeno/metabolismo , Fenômenos Mecânicos , Microscopia , Pele/diagnóstico por imagem , Pele/metabolismo , Animais , Fenômenos Biomecânicos , Processamento de Imagem Assistida por Computador , Camundongos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA