Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Blood ; 143(11): 1006-1017, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38142424

RESUMO

ABSTRACT: Systemic mastocytosis (SM) is defined by the expansion and accumulation of neoplastic mast cells (MCs) in the bone marrow (BM) and extracutaneous organs. Most patients harbor a somatic KIT D816V mutation, which leads to growth factor-independent KIT activation and accumulation of MC. Tumor necrosis factor α (TNF) is a proapoptotic and inflammatory cytokine that has been implicated in the clonal selection of neoplastic cells. We found that KIT D816V increases the expression and secretion of TNF. TNF expression in neoplastic MCs is reduced by KIT-targeting drugs. Similarly, knockdown of KIT or targeting the downstream signaling cascade of MAPK and NF-κB signaling reduced TNF expression levels. TNF reduces colony formation in human BM cells, whereas KIT D816V+ cells are less susceptible to the cytokine, potentially contributing to clonal selection. In line, knockout of TNF in neoplastic MC prolonged survival and reduced myelosuppression in a murine xenotransplantation model. Mechanistic studies revealed that the relative resistance of KIT D816V+ cells to TNF is mediated by the apoptosis-regulator BIRC5 (survivin). Expression of BIRC5 in neoplastic MC was confirmed by immunohistochemistry of samples from patients with SM. TNF serum levels are significantly elevated in patients with SM and high TNF levels were identified as a biomarker associated with inferior survival. We here characterized TNF as a KIT D816V-dependent cytokine that promotes clonal dominance. We propose TNF and apoptosis-associated proteins as potential therapeutic targets in SM.


Assuntos
Mastocitose Sistêmica , Mastocitose , Humanos , Animais , Camundongos , Fator de Necrose Tumoral alfa , Survivina/genética , Prognóstico , Mastocitose Sistêmica/diagnóstico , Mastocitose Sistêmica/genética , Citocinas
2.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37703004

RESUMO

T follicular helper (Tfh) cells are essential for the development of germinal center B cells and high-affinity antibody-producing B cells in humans and mice. Here, we identify the guanine nucleotide exchange factor (GEF) Rin-like (Rinl) as a negative regulator of Tfh generation. Loss of Rinl leads to an increase of Tfh in aging, upon in vivo immunization and acute LCMV Armstrong infection in mice, and in human CD4+ T cell in vitro cultures. Mechanistically, adoptive transfer experiments using WT and Rinl-KO naïve CD4+ T cells unraveled T cell-intrinsic GEF-dependent functions of Rinl. Further, Rinl regulates CD28 internalization and signaling, thereby shaping CD4+ T cell activation and differentiation. Thus, our results identify the GEF Rinl as a negative regulator of global Tfh differentiation in an immunological context and species-independent manner, and furthermore, connect Rinl with CD28 internalization and signaling pathways in CD4+ T cells, demonstrating for the first time the importance of endocytic processes for Tfh differentiation.


Assuntos
Antígenos CD28 , Fatores de Troca do Nucleotídeo Guanina , Humanos , Animais , Camundongos , Transdução de Sinais , Diferenciação Celular , Transferência Adotiva
3.
Cell Metab ; 35(2): 299-315.e8, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754020

RESUMO

FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.


Assuntos
Sódio , Linfócitos T Reguladores , Humanos , Sódio/metabolismo , Autoimunidade , Fatores de Transcrição Forkhead/metabolismo
4.
iScience ; 26(1): 105717, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36507225

RESUMO

To investigate long COVID-19 syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as patients with long COVID-19 syndrome (LCS). Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to patients with LCS. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS. High levels of anti-inflammatory oxylipins including omega-3 fatty acids in LCS were detected by eicosadomics, whereas targeted metabolic profiling indicated high levels of anti-inflammatory osmolytes taurine and hypaphorine, but low amino acid and triglyceride levels and deregulated acylcarnitines. A model considering alternatively polarized macrophages as a major contributor to these molecular alterations is presented.

5.
Hum Genet ; 142(8): 1077-1089, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36445457

RESUMO

Loss-of-function variants in AP3D1 have been linked to Hermansky-Pudlak syndrome (HPS) 10, a severe multisystem disorder characterized by oculocutaneous albinism, immunodeficiency, neurodevelopmental delay, hearing loss (HL), and neurological abnormalities, fatal in early childhood. Here, we report a consanguineous family who presented with presumably isolated autosomal recessive (AR) HL. Whole-exome sequencing was performed on all core family members, and selected patients were screened using array-based copy-number analysis and karyotyping. Candidate variants were validated by Sanger sequencing and assessed in silico. A homozygous, likely pathogenic p.V711I missense variant in AP3D1 segregated with the HL. The family was characterized by thorough medical and laboratory examination. The HL was consistent across patients and accompanied by neurological manifestations in two brothers. The sole female patient was diagnosed with premature ovarian failure. Further findings, including mild neutropenia and reduced NK-cell cytotoxicity in some as well as brain alterations in all homozygous patients, were reminiscent of HPS10, though milder and lacking the characteristic albinism. Previously unrecognized, milder, isolated HL was identified in all heterozygous carriers. A protein model indicates that the variant interferes with protein-protein interactions. These results suggest that a missense variant alters inner-ear-specific functions leading to HL with mild HPS10-like symptoms of variable penetrance. Milder HL in heterozygous carriers may point towards semi-dominant inheritance of this trait. Since all previously reported HPS10 cases were pediatric, it is unknown whether the observed primary ovarian insufficiency recapitulates the subfertility in Ap3d1-deficient mice.


Assuntos
Surdez , Perda Auditiva Neurossensorial , Síndrome de Hermanski-Pudlak , Masculino , Humanos , Pré-Escolar , Feminino , Animais , Camundongos , Síndrome de Hermanski-Pudlak/diagnóstico , Síndrome de Hermanski-Pudlak/patologia , Mutação de Sentido Incorreto , Perda Auditiva Neurossensorial/genética , Proteínas de Transporte , Homozigoto , Complexo 3 de Proteínas Adaptadoras , Subunidades delta do Complexo de Proteínas Adaptadoras , Subunidades beta do Complexo de Proteínas Adaptadoras
6.
Vaccines (Basel) ; 10(4)2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35455265

RESUMO

First-generation vaccines against SARS-CoV-2 do not provide adequate immune protection. Therefore, we engineered a divalent gene construct combining the receptor-binding domain (RBD) of the spike protein and the immunodominant region of the viral nucleocapsid. This fusion protein was produced in either E. coli or a recombinant baculovirus system. Subsequently, the fusion protein was mixed with adjuvant and administered to mice in a prime-booster mode. Mice (72%) produced an IgG response against both proteins (titer: 10-4-10-5) 14 days after the first booster injection, which was increased to 100% by a second booster. Comparable IgG responses were detected against the delta, gamma and omicron variants of the RBD region. Durability testing revealed IgGs beyond 90 days. In addition, cytolytic effector cell molecules were increased in lymphocytes isolated from peripheral blood. Ex vivo stimulation of T cells by nucleocapsid and RBD peptides showed antigen-specific upregulation of CD44 among the CD4+ and CD8+ T cells of vaccinated mice. No side effect was documented in the central nervous system. Cumulatively, these data represent a proof-of-principle approach alternative to existing mRNA vaccination strategies.

7.
J Allergy Clin Immunol Pract ; 10(7): 1889-1902.e9, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35263681

RESUMO

BACKGROUND: Functional iron deficiency facilitates allergy development and amplifies the symptom burden in people experiencing allergies. Previously we selectively delivered micronutrients to immune cells with ß-lactoglobulin as carrier (holoBLG), resulting in immune resilience and allergy prevention. OBJECTIVE: The clinical efficacy of a food for special medical purposes-lozenge containing ß-lactoglobulin with iron, polyphenols, retinoic acid, and zinc (holoBLG lozenge) was assessed in allergic women. METHODS: In a randomized, double-blind, placebo-controlled pilot study, grass- and/or birch pollen-allergic women (n = 51) were given holoBLG or placebo lozenges over 6 months. Before and after dietary supplementation, participants were nasally challenged and the blood was analyzed for immune and iron parameters. Daily symptoms, medications, pollen concentrations, and well-being were recorded by an electronic health application. RESULTS: Total nasal symptom score after nasal provocations improved by 42% in the holoBLG group versus 13% in the placebo group. The combined symptom medication score during the birch peak and entire season as well as the entire grass pollen season improved in allergic subjects supplemented with the holoBLG lozenge by 45%, 31%, and 40%, respectively, compared with the placebo arm. Participants ingesting the holoBLG lozenge had improved iron status with increased hematocrit values, decreased red cell distribution width, and higher iron levels in circulating CD14+ cells compared with the placebo group. CONCLUSIONS: Targeted micronutrition with the holoBLG lozenge seemed to be effective in elevating the labile iron levels in immune cells and reducing the symptom burden in allergic women in this pilot study. The underlying allergen-independent mechanism provides evidence that dietary nutritional supplementation of the immune system is one of the ways to combat atopy.


Assuntos
Conjuntivite Alérgica , Hipersensibilidade Imediata , Rinite Alérgica Sazonal , Alérgenos , Método Duplo-Cego , Feminino , Humanos , Ferro/uso terapêutico , Lactoglobulinas/uso terapêutico , Projetos Piloto , Poaceae , Comprimidos/uso terapêutico
8.
Front Chem ; 10: 826346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35178376

RESUMO

Acute promyelocytic leukaemia (APL) can be cured by the co-administration of arsenic trioxide (ATO) and all-trans retinoic acid (ATRA). These small molecules relieve the differentiation blockade of the transformed promyelocytes and trigger their maturation into functional neutrophils, which are physiologically primed for apoptosis. This normalization therapy represents a compelling alternative to cytotoxic anticancer chemotherapy, but lacks an in vitro model system for testing the efficiency of novel combination treatments consisting of inducers of differentiation and metallopharmaceuticals. Here, using proteome profiling we present an experimental framework that enables characterising the differentiation- and metal-specific effects of the combination treatment in a panel of acute myeloid leukaemia (AML) cell lines (HL-60 and U937), including APL (NB4). Differentiation had a substantial impact on the proteome on the order of 10% of the identified proteins and featured classical markers and transcription factors of myeloid differentiation. Additionally, ATO provoked specific cytoprotective effects in the AML cell lines HL-60 and U937. In HL-60, these effects included an integrated stress response (ISR) in conjunction with redox defence, while proteasomal responses and a metabolic rewiring were observed in U937 cells. In contrast, the APL cell line NB4 did not display such adaptions indicating a lack of plasticity to cope with the metal-induced stress, which may explain the clinical success of this combination treatment. Based on the induction of these cytoprotective effects, we proposed a novel metal-based compound to be used for the combination treatment instead of ATO. The organoruthenium drug candidate plecstatin-1 was previously shown to induce reactive oxygen species and an ISR. Indeed, the plecstatin-1 combination was found to affect similar pathways compared to the ATO combination in HL-60 cells and did not lead to cytoprotective response signatures in NB4. Moreover, the monocytic cell line U937 showed a low plasticity to cope with the plecstatin-1 combination, which suggests that this combination might achieve therapeutic benefit beyond APL. We propose that the cytoprotective plasticity of cancer cells might serve as a general proxy to discover novel combination treatments in vitro.

9.
Microbiol Spectr ; 10(1): e0140221, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196824

RESUMO

Various commercial anti-Spike SARS-CoV-2 antibody tests are used for studies and in clinical settings after vaccination. An international standard for SARS-CoV-2 antibodies has been established to achieve comparability of such tests, allowing conversions to BAU/mL. This study aimed to investigate the comparability of antibody tests regarding the timing of blood collection after vaccination. For this prospective observational study, antibody levels of 50 participants with homologous AZD1222 vaccination were evaluated at 3 and 11 weeks after the first dose and 3 weeks after the second dose using two commercial anti-Spike binding antibody assays (Roche and Abbott) and a surrogate neutralization assay. The correlation between Roche and Abbott changed significantly depending on the time point studied. Although Abbott provided values three times higher than Roche 3 weeks after the first dose, the values for Roche were twice as high as for Abbott 11 weeks after the first dose and 5 to 6 times higher at 3 weeks after the second dose. The comparability of quantitative anti-Spike SARS-CoV-2 antibody tests was highly dependent on the timing of blood collection after vaccination. Therefore, standardization of the timing of blood collection might be necessary for the comparability of different quantitative SARS-COV-2 antibody assays. IMPORTANCE This work showed that the comparability of apparently standardized SARS-CoV-2 antibody assays (Roche, Abbott; both given in BAU/mL) after vaccination depends on the time of blood withdrawal. Initially (3 weeks after the first dose AZD1222), there were 3 times higher values in the Abbott assay, but this relationship inversed before boosting (11 weeks after the first dose) with Roche 2 times greater than Abbott. After the booster, Roche quantified ca. 5 times higher levels than Abbott. This must be considered by clinicians when interpreting SARS-CoV-2 antibody levels.


Assuntos
Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , COVID-19/diagnóstico , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/tendências , Adulto , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Humanos , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Vacinação/normas
10.
Clin Chem Lab Med ; 60(5): 701-706, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35085430

RESUMO

OBJECTIVES: Peripheral blood mononuclear cells (PBMCs) are a versatile material for clinical routine as well as for research projects. However, their isolation via density gradient centrifugation is still time-consuming. When samples are taken beyond usual laboratory handling times, it may sometimes be necessary to pause the isolation process. Our aim was to evaluate the impact of delays up to 48 h after the density gradient centrifugation on PBMC yield, purity and viability. METHODS: PBMCs were isolated from samples of 20 donors, either with BD Vacutainer CPT tubes (CPT) or with the standard Ficoll method. Isolation was paused after initial density gradient centrifugation for 0, 24, or 48 h. PBMC yield (% output/input), purity (% PBMCs/total cells) and viability (% Annexin V-/propidium iodide-) were compared. RESULTS: The yield did not change significantly over time when CPT were used (55%/52%/47%), but did after isolation with the standard method (62%/40%[p<0.0001]/53%[p<0.01]). Purity was marginally affected if CPT were used (95%/93%[p=n.s./92%[p<0.05] vs. 97% for all time points with standard method). Whereas viable PBMCs decreased steadily for CPT isolates (62%/51%[p<0.001]/36%[p<0.0001]), after standard Ficoll gradient isolation, cell apoptosis was more pronounced already after 24 h delay, and viability did not further decrease after 48 h (64%/44%[p<0.0001]/40%[p<0.0001]). CONCLUSIONS: In conclusion, our findings suggest that while post-centrifugation delays ≥24 h might have only a minor effect on cell yield and purity, their impact on cell viability is substantial, even when CPT are used.


Assuntos
Leucócitos Mononucleares , Leucócitos , Separação Celular/métodos , Sobrevivência Celular , Ficoll , Humanos
11.
Front Cell Infect Microbiol ; 11: 651484, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540715

RESUMO

This study aimed to determine the specific cytokine profile in peripheral blood during the early onset of COVID-19 infection. This was a cross-sectional exploratory, single center study. A total of 55 plasma samples were studied. Serum samples of adults showing symptoms of COVID-19 infection who were tested positive for SARS-CoV-2 infection (CoV+, n=18) at the COVID-19 outpatient clinic of the Medical University of Vienna were screened for immune activation markers by Luminex technology. Additionally, age and gender-matched serum samples of patients displaying COVID-19 associated symptoms, but tested negative for SARS-CoV-2 (CoV-, n=16) as well as healthy controls (HC, n=21) were analyzed. COVID-19 positive (CoV+) patients showed a specific upregulation of BLC (141; 74-189 pg/mL), SCD30 (273; 207-576 pg/mL), MCP-2 (18; 12-30 pg/mL) and IP-10 (37; 23-96 pg/mL), compared to patients with COVID19-like symptoms but negative PCR test (CoV-), BLC (61; 22-100 pg/mL), sCD30L (161; 120-210 pg/mL), MCP-2 (8; 5-12 pg/mL) and IP-10 (9; 6-12 pg/mL) and healthy controls (HC) (BLC 22; 11-36 pg/mL, sCD30 74; 39-108 pg/mL, MCP-2 6; 3-9. pg/mL, IP-10 = 8; 5-13). The markers APRIL, sIL-2R, IL7, MIF, MIP-1b, SCF, SDF-1a, sTNF-RII were elevated in both CoV+ and CoV- patient groups compared to healthy controls. HGF, MDC and VEGF-A were elevated in CoV- but not CoV+ compared to healthy controls. BLC, sCD30, MCP-2 and IP-10 are specifically induced during early stages of COVID-19 infection and might constitute attractive targets for early diagnosis and treatment of this disease.


Assuntos
COVID-19 , Biomarcadores , Estudos Transversais , Humanos , SARS-CoV-2
12.
J Biol Chem ; 296: 100487, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33676898

RESUMO

Numerous observations indicate that red blood cells (RBCs) affect T-cell activation and proliferation. We have studied effects of packed RBCs (PRBCs) on T-cell receptor (TCR) signaling and the molecular mechanisms whereby (P)RBCs modulate T-cell activation. In line with previous reports, PRBCs attenuated the expression of T-cell activation markers CD25 and CD69 upon costimulation via CD3/CD28. In addition, T-cell proliferation and cytokine expression were markedly reduced when T-cells were stimulated in the presence of PRBCs. Inhibitory activity of PRBCs required direct cell-cell contact and intact PRBCs. The production of activation-induced cellular reactive oxygen species, which act as second messengers in T-cells, was completely abrogated to levels of unstimulated T-cells in the presence of PRBCs. Phosphorylation of the TCR-related zeta chain and thus proximal TCR signal transduction was unaffected by PRBCs, ruling out mechanisms based on secreted factors and steric interaction restrictions. In large part, downstream signaling events requiring reactive oxygen species for full functionality were affected, as confirmed by an untargeted MS-based phosphoproteomics approach. PRBCs inhibited T-cell activation more efficiently than treatment with 1 mM of the antioxidant N-acetyl cysteine. Taken together, our data imply that inflammation-related radical reactions are modulated by PRBCs. These immunomodulating effects may be responsible for clinical observations associated with transfusion of PRBCs.


Assuntos
Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Eritrócitos/imunologia , Subunidade alfa de Receptor de Interleucina-2/imunologia , Lectinas Tipo C/imunologia , Espécies Reativas de Oxigênio/metabolismo , Linfócitos T/imunologia , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Proliferação de Células/fisiologia , Células Cultivadas , Eritrócitos/metabolismo , Humanos , Imunomodulação , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Lectinas Tipo C/metabolismo , Leucócitos Mononucleares , Ativação Linfocitária , Fosforilação , Transdução de Sinais , Linfócitos T/metabolismo
13.
FASEB J ; 35(4): e21217, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33715236

RESUMO

The importance of cellular metabolic adaptation in inducing robust T cell responses is well established. However, the mechanism by which T cells link information regarding nutrient supply to clonal expansion and effector function is still enigmatic. Herein, we report that the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) is a critical link between cellular energy demand and translational activity and, thus, orchestrates optimal expansion of T cells in vivo. AMPK deficiency did not affect T cell fate decision, activation, or T effector cell generation; however, the magnitude of T cell responses in murine in vivo models of T cell activation was markedly reduced. This impairment was global, as all T helper cell subsets were similarly sensitive to loss of AMPK which resulted in reduced T cell accumulation in peripheral organs and reduced disease severity in pathophysiologically as diverse models as T cell transfer colitis and allergic airway inflammation. T cell receptor repertoire analysis confirmed similar clonotype frequencies in different lymphoid organs, thereby supporting the concept of a quantitative impairment in clonal expansion rather than a skewed qualitative immune response. In line with these findings, in-depth metabolic analysis revealed a decrease in T cell oxidative metabolism, and gene set enrichment analysis indicated a major reduction in ribosomal biogenesis and mRNA translation in AMPK-deficient T cells. We, thus, provide evidence that through its interference with these delicate processes, AMPK orchestrates the quantitative, but not the qualitative, manifestation of primary T cell responses in vivo.


Assuntos
Adenilato Quinase/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Linfócitos T Reguladores/fisiologia , Adaptação Fisiológica , Adenilato Quinase/genética , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos , Colite/imunologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Enzimológica da Expressão Gênica , Ativação Linfocitária , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Células Th1/fisiologia , Células Th17/fisiologia
14.
Blood ; 137(2): 238-247, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-32777817

RESUMO

Mastocytosis is a hematopoietic neoplasm characterized by expansion of KIT D816V-mutated clonal mast cells in various organs and severe or even life-threatening anaphylactic reactions. Recently, hereditary α-tryptasemia (HαT) has been described as a common genetic trait with increased copy numbers of the α-tryptase encoding gene, TPSAB1, and associated with an increased basal serum tryptase level and a risk of mast cell activation. The purpose of our study was to elucidate the clinical relevance of HαT in patients with mastocytosis. TPSAB1 germline copy number variants were assessed by digital polymerase chain reaction in 180 mastocytosis patients, 180 sex-matched control subjects, 720 patients with other myeloid neoplasms, and 61 additional mastocytosis patients of an independent validation cohort. α-Tryptase encoding TPSAB1 copy number gains, compatible with HαT, were identified in 17.2% of mastocytosis patients and 4.4% of the control population (P < .001). Patients with HαT exhibited higher tryptase levels than patients without HαT (median tryptase in HαT+ cases: 49.6 ng/mL vs HαT- cases: 34.5 ng/mL, P = .004) independent of the mast cell burden. Hymenoptera venom hypersensitivity reactions and severe cardiovascular mediator-related symptoms/anaphylaxis were by far more frequently observed in mastocytosis patients with HαT than in those without HαT. Results were confirmed in an independent validation cohort. The high prevalence of HαT in mastocytosis hints at a potential pathogenic role of germline α-tryptase encoding TPSAB1 copy number gains in disease evolution. Together, our data suggest that HαT is a novel emerging robust biomarker in mastocytosis that is useful for determining the individual patient´s risk of developing severe anaphylaxis.


Assuntos
Mastocitose , Triptases/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Variações do Número de Cópias de DNA , Feminino , Marcadores Genéticos , Humanos , Masculino , Mastocitose/sangue , Mastocitose/genética , Pessoa de Meia-Idade , Triptases/sangue , Adulto Jovem
15.
FEBS J ; 288(2): 640-662, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32386462

RESUMO

Nuclear factor 'κ-light-chain-enhancer' of activated B cells (NF-κB) signaling is a signaling pathway used by most immune cells to promote immunostimulatory functions. Recent studies have indicated that regulatory T cells (Treg) differentially integrate TCR-derived signals, thereby maintaining their suppressive features. However, the role of NF-κB signaling in the activation of human peripheral blood (PB) Treg has not been fully elucidated so far. We show that the activity of the master transcription factor forkhead box protein 3 (FOXP3) attenuates p65 phosphorylation and nuclear translocation of the NF-κB proteins p50, p65, and c-Rel following activation in human Treg. Using pharmacological and genetic inhibition of canonical NF-κB signaling in FOXP3-transgenic T cells and PB Treg from healthy donors as well as Treg from a patient with a primary NFKB1 haploinsufficiency, we validate that Treg activation and suppressive capacity is independent of NF-κB signaling. Additionally, repression of residual NF-κB signaling in Treg further enhances interleukin-10 (IL-10) production. Blockade of NF-κB signaling can be exploited for the generation of in vitro induced Treg (iTreg) with enhanced suppressive capacity and functional stability. In this respect, dual blockade of mammalian target of rapamycin (mTOR) and NF-κB signaling was accompanied by enhanced expression of the transcription factors FOXP1 and FOXP3 and demethylation of the Treg-specific demethylated region compared to iTreg generated under mTOR blockade alone. Thus, we provide first insights into the role of NF-κB signaling in human Treg. These findings could lead to strategies for the selective manipulation of Treg and the generation of improved iTreg for cellular therapy.


Assuntos
Fatores de Transcrição Forkhead/imunologia , Haploinsuficiência/imunologia , Subunidade p50 de NF-kappa B/imunologia , Linfócitos T Reguladores/imunologia , Serina-Treonina Quinases TOR/imunologia , Fator de Transcrição RelA/imunologia , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/imunologia , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/imunologia , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Ativação Linfocitária , Subunidade p50 de NF-kappa B/deficiência , Subunidade p50 de NF-kappa B/genética , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Proteínas Repressoras/genética , Proteínas Repressoras/imunologia , Transdução de Sinais , Sirolimo/farmacologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Tiazóis/farmacologia , Fator de Transcrição RelA/antagonistas & inibidores , Fator de Transcrição RelA/genética
16.
Chemistry ; 26(67): 15528-15537, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32902006

RESUMO

The organometallic AuI bis-N-heterocyclic carbene complex [Au(9-methylcaffeine-8-ylidene)2 ]+ (AuTMX2 ) was previously shown to selectively and potently stabilise telomeric DNA G-quadruplex (G4) structures. This study sheds light on the molecular reactivity and mode of action of AuTMX2 in the cellular context using mass spectrometry-based methods, including shotgun proteomics in A2780 ovarian cancer cells. In contrast to other metal-based anticancer agents, this organogold compound is less prone to form coordinative bonds with biological nucleophiles and is expected to exert its drug effects mainly by non-covalent interactions. Global protein expression changes of treated cancer cells revealed a multimodal mode of action of AuTMX2 by alterations in the nucleolus, telomeres, actin stress-fibres and stress-responses, which were further supported by pharmacological assays, fluorescence microscopy and cellular accumulation experiments. Proteomic data are available via ProteomeXchange with identifier PXD020560.


Assuntos
Antineoplásicos , Ouro , Compostos Organometálicos , Neoplasias Ovarianas , Antineoplásicos/farmacologia , Cafeína/análogos & derivados , Cafeína/química , Cafeína/farmacologia , Linhagem Celular Tumoral , Feminino , Ouro/química , Ouro/farmacologia , Humanos , Metano/análogos & derivados , Metano/química , Metano/farmacologia , Compostos Organometálicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Proteômica
17.
FASEB J ; 34(10): 14024-14041, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32860638

RESUMO

Aluminium salts have been used in vaccines for decades. However, the mechanisms underlying their adjuvant effect are still unclear. Neutrophils, the first immune cells at the injection site, can release cellular DNA together with granular material, so-called neutrophil extracellular traps (NETs). In mice, NETs apparently play a role in aluminium hydroxide (alum)-adjuvant immune response to vaccines. Although no experimental data exist, this effect is assumed to be operative also in humans. As a first step to verify this knowledge in humans, we demonstrate that the injection of alum particles into human skin biopsies ex vivo leads to similar tissue infiltration of neutrophils and NET-formation. Moreover, we characterized the mechanism leading to alum-induced NET-release in human neutrophils as rapid, NADPH oxidase-independent process involving charge, phagocytosis, phagolysosomal rupture, Ca2+ -flux, hyperpolarization of the mitochondrial membrane, and mitochondrial ROS. Extracellular flow and inhibition experiments suggested that no additional energy from oxidative phosphorylation or glycolysis is required for NET-release. This study suggests a so far unappreciated role for neutrophils in the initial phase of immune responses to alum-containing vaccines in humans and provides novel insights into bioenergetic requirements of NET-formation.


Assuntos
Adjuvantes Imunológicos/farmacologia , Hidróxido de Alumínio/farmacologia , Armadilhas Extracelulares , Lisossomos/metabolismo , Potencial da Membrana Mitocondrial , Infiltração de Neutrófilos , Neutrófilos/efeitos dos fármacos , Cálcio/metabolismo , Células Cultivadas , Glicólise , Humanos , Mitocôndrias/metabolismo , NADPH Oxidases/metabolismo , Neutrófilos/citologia , Neutrófilos/imunologia , Fosforilação Oxidativa
18.
FASEB J ; 34(6): 8367-8384, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32319705

RESUMO

The ectonucleotidase CD39 on human regulatory T-cells (Treg) is an important immune regulator which is dysregulated in autoimmune diseases and cancer immunosuppression. We here define that CD39 expression on Treg is independent of the Treg-specific transcription factors FOXP3 and HELIOS and promoted by canonical TGF-b- and mTOR-signaling. Furthermore, the TGF-b mediated upregulation of CD39 is counteracted by reactive oxygen species (ROS)-driven autophagy. In line, CD39+ peripheral blood Treg constitute a distinct lineage with low autophagic flux and absent ROS production. Patients with rare genetic defects in autophagy show supraphysiological levels of CD39+ Treg, validating our observations in vivo. These biological processes rely on a distinct transcriptional program with CD39+ Treg expressing low levels of two genes with putative involvement in autophagy, NEFL and PLAC8. Furthermore, the TGF-b downstream transcription factor SOX4 is selectively upregulated in CD39+ Treg. Overexpression of SOX4 in Treg strongly increases CD39 expression, while Crispr/Cas9-mediated knockout of SOX4 in Treg has the opposing effect. Thus, we identify a crucial role of SOX4 in immune regulation and provide new insights involving the interplay of tolerogenic cues and autophagy in Treg.


Assuntos
Apirase/imunologia , Espécies Reativas de Oxigênio/imunologia , Fatores de Transcrição SOXC/imunologia , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/imunologia , Adulto , Células Cultivadas , Feminino , Humanos , Tolerância Imunológica/imunologia , Fatores Imunológicos/imunologia , Terapia de Imunossupressão/métodos , Masculino , Transdução de Sinais/imunologia
19.
Front Pediatr ; 8: 52, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32154197

RESUMO

Childhood obesity is an increasing health care problem associated with insulin resistance and low-level systemic inflammation, which can ultimately lead to diabetes. Evidence for efficacy of therapeutic intervention programs on the early development of obesity associated sequelae is moderate. This paper investigates the effect of a multidisciplinary short-term intervention program on insulin resistance and metaflammation in childhood obesity. Two hundred and 36 overweight or obese children and adolescents between the ages of 10 and 14 were included in a prospective 5 months intervention study, which included sports, psychotherapy, and nutritional counseling. Primary endpoints were the effects on body mass index standard deviation score (BMI-SDS) and homeostatic model assessment of insulin resistance (HOMA-IR), key secondary endpoints were the levels of C-reactive protein (CRP), leptin, and adiponectin. At baseline, a substantial proportion of participants showed signs of insulin resistance (mean HOMA-IR 5.5 ± 3.4) despite not meeting the diagnostic criteria for diabetes, and low-level inflammation (mean CRP 3.9 mg/l ± 3.8 mg/l). One hundred and 95 participants (83%) completed the program resulting in a significant reduction in BMI-SDS, HOMA-IR, CRP, and leptin and a significant increase in adiponectin (mean change compared to baseline -0.14, -0.85, -1.0 mg/l, -2.8 ng/ml, and 0.5 µg/ml, respectively; p < 0.001 each). Effects on BMI-SDS, HOMA-IR, CRP, and adiponectin were largely independent whereas leptin was positively correlated with BMI-SDS and total fat mass before and after intervention (r = 0.56 and 0.61, p < 0.001 each). Short-term multidisciplinary intervention successfully improved body composition, insulin sensitivity, low-level systemic inflammation, and the adipokine profile in childhood obesity. Our findings highlight the immediate connection between obesity and the pathophysiology of its sequelae, and emphasize the importance of early intervention. Continued lifestyle modification is likely necessary to consolidate and augment the long-term effects.

20.
Allergy ; 75(7): 1618-1629, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31991489

RESUMO

BACKGROUND: Regulatory T lymphocytes (Treg) play an important role in preventing allergic diseases. We characterized Treg expansion kinetics, marker profiles, and recirculation behavior in allergen-challenged mice, which had been pretreated with IL-2/αIL-2 complexes in the presence or absence of allergen. Moreover, the ability of induced Treg to control airway hyperreactivity and effector functions of lung T cells was determined. METHODS: Humanized TCR/HLA-transgenic allergy mice were treated in vivo with recombinant IL-2 complexed to the anti-IL-2 mAb JES6-1 in the presence or absence of mugwort pollen extract (MPE) on days 0-2. Afterward, they were intranasally challenged with MPE (days 13-15) followed by determination of airway hyperreactivity and lung T cell effector functions. Multiparametric flow cytometry on peripheral blood T cells was performed on a daily basis. RESULTS: IL-2/αIL-2 complexes highly efficiently expanded peripheral Treg cells, while concomitant allergen exposure altered the phenotype of expanded Treg cells. Notably, application of allergen together with IL-2/αIL-2 complexes induced expression of Treg marker molecules CTLA4, NRP1, Helios, and GITR on conventional T cells. Apart from CD25, GARP was identified as the most reliable surface-expressed lineage discrimination marker of Treg expanded in the presence of IL-2/αIL-2 complexes and allergen. Finally, IL-2/αIL-2 complex-expanded Treg cells could be recalled upon allergen challenge, which was associated with suppression of lung-specific Th2 responses long after initial treatment. CONCLUSION: The characterization of reliable surface and transcription markers of IL-2/αIL-2 complex-expanded Treg along with their expansion kinetics and function will help to identify protocols for their long-term expansion in vivo.


Assuntos
Hipersensibilidade , Linfócitos T Reguladores , Alérgenos , Animais , Tolerância Imunológica , Interleucina-2 , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA