Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(17): 8000-8005, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37639696

RESUMO

We investigate the electronic properties of a graphene and α-ruthenium trichloride (α-RuCl3) heterostructure using a combination of experimental techniques. α-RuCl3 is a Mott insulator and a Kitaev material. Its combination with graphene has gained increasing attention due to its potential applicability in novel optoelectronic devices. By using a combination of spatially resolved photoemission spectroscopy and low-energy electron microscopy, we are able to provide a direct visualization of the massive charge transfer from graphene to α-RuCl3, which can modify the electronic properties of both materials, leading to novel electronic phenomena at their interface. A measurement of the spatially resolved work function allows for a direct estimate of the interface dipole between graphene and α-RuCl3. Their strong coupling could lead to new ways of manipulating electronic properties of a two-dimensional heterojunction. Understanding the electronic properties of this structure is pivotal for designing next generation low-power optoelectronics devices.

2.
Nanoscale ; 15(18): 8313-8319, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37083943

RESUMO

The magnetization patterns on three atomic layers thick islands of Co on Ru(0001) are studied by spin-polarized low-energy electron microscopy (SPLEEM). In-plane magnetized micrometer wide triangular Co islands are grown on Ru(0001). They present two different orientations correlated with two different stacking sequences which differ only in the last layer position. The stacking sequence determines the type of magnetization pattern observed: the hcp islands present very wide domain walls, while the fcc islands present domains separated by much narrower domain walls. The former is an extremely low in-plane anisotropy system. We estimate the in-plane magnetic anisotropy of the fcc regions to be 1.96 × 104 J m-3 and of the hcp ones to be 2.5 × 102 J m-3.

3.
Nano Lett ; 22(16): 6678-6684, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35939526

RESUMO

Chiral spin textures are fundamentally interesting, with promise for device applications. Stabilizing chirality is conventionally achieved by introducing Dzyaloshinskii-Moriya interaction (DMI) in asymmetric multilayers, where the thickness of each layer is at least a few monolayers. Here we report an ultrasensitive chirality switching in (Ni/Co)n multilayer induced by capping with only 0.22 monolayer of Pd. Using spin-polarized low-energy electron microscopy, we monitor the gradual evolution of domain walls from left-handed to right-handed Néel walls and quantify the DMI induced by the Pd capping layer. We also observe the chiral evolution of a skyrmion during the DMI switching, where no significant topological protection is found as the skyrmion winding number varies. This corresponds to a minimum energy cost of <1 attojoule during the skyrmion chirality switching. Our results demonstrate the detailed chirality evolution within skyrmions during the DMI sign switching, which is relevant to practical applications of skyrmionic devices.

4.
Nat Commun ; 13(1): 1350, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35292656

RESUMO

Magnetic skyrmions are topologically nontrivial spin textures with envisioned applications in energy-efficient magnetic information storage. Toggling the presence of magnetic skyrmions via writing/deleting processes is essential for spintronics applications, which usually require the application of a magnetic field, a gate voltage or an electric current. Here we demonstrate the reversible field-free writing/deleting of skyrmions at room temperature, via hydrogen chemisorption/desorption on the surface of Ni and Co films. Supported by Monte-Carlo simulations, the skyrmion creation/annihilation is attributed to the hydrogen-induced magnetic anisotropy change on ferromagnetic surfaces. We also demonstrate the role of hydrogen and oxygen on magnetic anisotropy and skyrmion deletion on other magnetic surfaces. Our results open up new possibilities for designing skyrmionic and magneto-ionic devices.

5.
Nat Mater ; 21(1): 95-102, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34663951

RESUMO

Liquids and solids are two fundamental states of matter. However, our understanding of their three-dimensional atomic structure is mostly based on physical models. Here we use atomic electron tomography to experimentally determine the three-dimensional atomic positions of monatomic amorphous solids, namely a Ta thin film and two Pd nanoparticles. We observe that pentagonal bipyramids are the most abundant atomic motifs in these amorphous materials. Instead of forming icosahedra, the majority of pentagonal bipyramids arrange into pentagonal bipyramid networks with medium-range order. Molecular dynamics simulations further reveal that pentagonal bipyramid networks are prevalent in monatomic metallic liquids, which rapidly grow in size and form more icosahedra during the quench from the liquid to the glass state. These results expand our understanding of the atomic structures of amorphous solids and will encourage future studies on amorphous-crystalline phase and glass transitions in non-crystalline materials with three-dimensional atomic resolution.

6.
Phys Rev Lett ; 127(12): 127203, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597075

RESUMO

It has been shown previously that the presence of a Dzyaloshinskii-Moriya interaction in perpendicularly magnetized thin films stabilizes Néel type domain walls. We demonstrate, using micromagnetic simulations and analytical modeling, that the presence of a uniaxial in plane magnetic anisotropy can also lead to the formation of Néel walls in the absence of a Dzyaloshinskii-Moriya interaction. It is possible to abruptly switch between Bloch and Néel walls via a small modulation of the in plane, but also the perpendicular, magnetic anisotropy. This opens up a route toward electric field control of the domain wall type with small applied voltages through electric field controlled anisotropies.

7.
Nature ; 592(7852): 60-64, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33790443

RESUMO

Amorphous solids such as glass, plastics and amorphous thin films are ubiquitous in our daily life and have broad applications ranging from telecommunications to electronics and solar cells1-4. However, owing to the lack of long-range order, the three-dimensional (3D) atomic structure of amorphous solids has so far eluded direct experimental determination5-15. Here we develop an atomic electron tomography reconstruction method to experimentally determine the 3D atomic positions of an amorphous solid. Using a multi-component glass-forming alloy as proof of principle, we quantitatively characterize the short- and medium-range order of the 3D atomic arrangement. We observe that, although the 3D atomic packing of the short-range order is geometrically disordered, some short-range-order structures connect with each other to form crystal-like superclusters and give rise to medium-range order. We identify four types of crystal-like medium-range order-face-centred cubic, hexagonal close-packed, body-centred cubic and simple cubic-coexisting in the amorphous sample, showing translational but not orientational order. These observations provide direct experimental evidence to support the general framework of the efficient cluster packing model for metallic glasses10,12-14,16. We expect that this work will pave the way for the determination of the 3D structure of a wide range of amorphous solids, which could transform our fundamental understanding of non-crystalline materials and related phenomena.

8.
Sci Adv ; 6(33): eaba4924, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32851165

RESUMO

The Dzyaloshinskii-Moriya interaction (DMI) is an antisymmetric exchange interaction that stabilizes chiral spin textures. It is induced by inversion symmetry breaking in noncentrosymmetric lattices or at interfaces. Recently, interfacial DMI has been found in magnetic layers adjacent to transition metals due to the spin-orbit coupling and at interfaces with graphene due to the Rashba effect. We report direct observation of strong DMI induced by chemisorption of oxygen on a ferromagnetic layer at room temperature. The sign of this DMI and its unexpectedly large magnitude-despite the low atomic number of oxygen-are derived by examining the oxygen coverage-dependent evolution of magnetic chirality. We find that DMI at the oxygen/ferromagnet interface is comparable to those at ferromagnet/transition metal interfaces; it has enabled direct tailoring of skyrmion's winding number at room temperature via oxygen chemisorption. This result extends the understanding of the DMI, opening up opportunities for the chemisorption-related design of spin-orbitronic devices.

9.
Nano Lett ; 20(7): 4739-4747, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32459968

RESUMO

Magnetic materials offer an opportunity to overcome the scalability and energy consumption limits affecting the semiconductor industry. New computational device architectures, such as low-power solid state magnetic logic and memory-in-logic devices, have been proposed which rely on the unique properties of magnetic materials. Magnetic skyrmions, topologically protected quasi-particles, are at the core of many of the newly proposed spintronic devices. Many different materials systems have been shown hosting ferromagnetic skyrmions at room temperature. However, a magnetic field is a key ingredient to stabilize skyrmions, and this is not desirable for applications, due to the poor scalability of active components generating magnetic fields. Here we report the observation of ferromagnetic skyrmions at room temperature and zero magnetic field, stabilized through interlayer exchange coupling (IEC) between a reference magnet and a free magnet. Most importantly, by tuning the strength of the IEC, we are able to tune the skyrmion size and areal density. Our findings are relevant to the development of skyrmion-based spintronic devices suitable for general-use applications which go beyond modern nanoelectronics.

10.
Nature ; 570(7762): 500-503, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31243385

RESUMO

Nucleation plays a critical role in many physical and biological phenomena that range from crystallization, melting and evaporation to the formation of clouds and the initiation of neurodegenerative diseases1-3. However, nucleation is a challenging process to study experimentally, especially in its early stages, when several atoms or molecules start to form a new phase from a parent phase. A number of experimental and computational methods have been used to investigate nucleation processes4-17, but experimental determination of the three-dimensional atomic structure and the dynamics of early-stage nuclei has been unachievable. Here we use atomic electron tomography to study early-stage nucleation in four dimensions (that is, including time) at atomic resolution. Using FePt nanoparticles as a model system, we find that early-stage nuclei are irregularly shaped, each has a core of one to a few atoms with the maximum order parameter, and the order parameter gradient points from the core to the boundary of the nucleus. We capture the structure and dynamics of the same nuclei undergoing growth, fluctuation, dissolution, merging and/or division, which are regulated by the order parameter distribution and its gradient. These experimental observations are corroborated by molecular dynamics simulations of heterogeneous and homogeneous nucleation in liquid-solid phase transitions of Pt. Our experimental and molecular dynamics results indicate that a theory beyond classical nucleation theory1,2,18 is needed to describe early-stage nucleation at the atomic scale. We anticipate that the reported approach will open the door to the study of many fundamental problems in materials science, nanoscience, condensed matter physics and chemistry, such as phase transition, atomic diffusion, grain boundary dynamics, interface motion, defect dynamics and surface reconstruction with four-dimensional atomic resolution.

11.
Ultramicroscopy ; 200: 180-183, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959319

RESUMO

Using spin-polarized low energy electron microscopy (SPLEEM), we observed surface step bunch induced perpendicular magnetic anisotropy in Fe/Ni bilayers grown on Cu(001) single crystal as well as in Ni/Co/Pd trilayers grown on W(110) crystal. On Cu(100) the formation of step bunches can be stimulated or suppressed by high- or low-temperature annealing cycles, respectively. SPLEEM images resolving the three dimensional magnetization vector in the Fe/Ni films grown on step bunched Cu(100) reveal an additional perpendicular magnetic anisotropy in regions near step bunches. In contrast, no extra perpendicular magnetic anisotropy is observed on low-temperature annealed Cu(100) featuring single-atom height step arrays. Additional investigation of Ni/Co/Pd trilayers on W(110) reveals the influence of step bunch orientation on magnetic anisotropy. Our observations may lead to opportunities for tailoring or patterning anisotropy in magnetic thin-films by controlling film morphology.

12.
Ultramicroscopy ; 200: 132-138, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30913476

RESUMO

Important applications of spin polarized low energy electron microscopy (SPLEEM) employ this technique's vector imaging capability to resolve domain wall (DW) spin textures. Studying several thin film systems including Co/W(110), Co/Cu(001) and (Co/Ni)n/W(110), we show that an additional contrast can appear at magnetic DWs. By imaging the magnetization as a function of electron landing energy, electron energies are selected at which the magnetic domain contrast vanishes. Surprisingly, under such conditions of zero contrast between magnetic domains, we observe the appearance of magnetic contrast outlining the DWs. This DW contrast does not depend on the DW spin texture. Instead, our measurements show that this DW contrast results from a combination of the energy-dependence of the spin reflectivity asymmetry of the magnetic film, the finite energy width of the spin polarized electron source, and the dispersion of the magnetic prism array that separates the illumination and imaging columns of the instrument. Awareness of this DW contrast mechanism is useful to aid correct interpretation of SPLEEM images.

13.
Nano Lett ; 18(9): 5974-5980, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30114354

RESUMO

Magnetic van der Waals (vdW) materials have emerged as promising candidates for spintronics applications, especially after the recent discovery of intrinsic ferromagnetism in monolayer vdW materials. There has been a critical need for tunable ferromagnetic vdW materials beyond room temperature. Here, we report a real-space imaging study of itinerant ferromagnet Fe3GeTe2 and the enhancement of its Curie temperature well above ambient temperature. We find that the magnetic long-range order in Fe3GeTe2 is characterized by an unconventional out-of-plane stripe-domain phase. In Fe3GeTe2 microstructures patterned by a focused ion beam, the out-of-plane stripe domain phase undergoes a surprising transition at 230 K to an in-plane vortex phase that persists beyond room temperature. The discovery of tunable ferromagnetism in Fe3GeTe2 materials opens up vast opportunities for utilizing vdW magnets in room-temperature spintronics devices.

14.
Nat Mater ; 17(7): 605-609, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29807987

RESUMO

The possibility of utilizing the rich spin-dependent properties of graphene has attracted much attention in the pursuit of spintronics advances. The promise of high-speed and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. Graphene is a weak spin-orbit coupling material and is generally not expected to induce a sufficient Dzyaloshinskii-Moriya interaction to affect magnetic chirality. We demonstrate that indeed graphene does induce a type of Dzyaloshinskii-Moriya interaction due to the Rashba effect. First-principles calculations and experiments using spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii-Moriya interaction can have a similar magnitude to that at interfaces with heavy metals. This work paves a path towards two-dimensional-material-based spin-orbitronics.

16.
Sci Rep ; 8(1): 5991, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29662066

RESUMO

The structure of magnetic domains, i.e. regions of uniform magnetization separated by domain walls, depends on the balance of competing interactions present in ferromagnetic (or ferrimagnetic) materials. When these interactions change then domain configurations also change as a result. Magnetite provides a good test bench to study these effects, as its magnetocrystalline anisotropy varies significantly with temperature. Using spin-polarized electron microscopy to map the micromagnetic domain structure in the (001) surface of a macroscopic magnetite crystal (~1 cm size) shows complex domain patterns with characteristic length-scales in the micrometer range and highly temperature dependent domain geometries. Although heating above the Curie temperature erases the domain patterns completely, cooling down reproduces domain patterns not only in terms of general characteristics: instead, complex microscopic domain geometries are reproduced in almost perfect fidelity between heating cycles. A possible explanation of the origin of the high-fidelity reproducibility is suggested to be a combination of the presence of hematite inclusions that lock bulk domains, together with the strong effect of the first order magnetocrystalline anisotropy which competes with the shape anisotropy to give rise to the observed complex patterns.

17.
Nat Commun ; 8: 15302, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28524875

RESUMO

Chiral spin textures in ultrathin films, such as skyrmions or chiral domain walls, are believed to offer large performance advantages in the development of novel spintronics technologies. While in-plane magnetized films have been studied extensively as media for current- and field-driven domain wall dynamics with applications in memory or logic devices, the stabilization of chiral spin textures in in-plane magnetized films has remained rare. Here we report a phase of spin structures in an in-plane magnetized ultrathin film system where out-of-plane spin orientations within domain walls are stable. Moreover, while domain walls in in-plane films are generally expected to be non-chiral, we show that right-handed spin rotations are strongly favoured in this system, due to the presence of the interfacial Dzyaloshinskii-Moriya interaction. These results constitute a platform to explore unconventional spin dynamics and topological phenomena that may enable high-performance in-plane spin-orbitronics devices.

18.
Ultramicroscopy ; 183: 67-71, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28522243

RESUMO

With its low work function and high mechanical strength, the LaB6/VB2 eutectic system is an interesting candidate for high performance thermionic emitters. For the development of device applications, it is important to understand the origin, value, and spatial distribution of the work function in this system. Here we combine thermal emission electron microscopy and low energy electron microscopy with Auger electron spectroscopy and physical vapor deposition of the constituent elements to explore physical and chemical conditions governing the work function of these surfaces. Our results include the observation that work function is lower (and emission intensity is higher) on VB2 inclusions than on the LaB6 matrix. We also observe that the deposition of atomic monolayer doses of vanadium results in surprisingly significant lowering of the work function with values as low as 1.1eV.

19.
Ultramicroscopy ; 183: 99-103, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28396081

RESUMO

The knowledge of the structural and electronic surface morphology is imperative to fully understand the charge transfer at interfaces of electronic devices, such as in photovoltaic (PV) cells. To this aim, here, we use low-energy electron microscopy to probe the unoccupied states of post-annealed MoOx thin-films grown in oxygen excess (x∼3.16) and deficient (x∼2.57) environments. 2D work function maps are correlated with the surface topography extracted by mirror electron microscopy (MEM) mode, which show homogenous surface morphology and electronic levels for the specimen with x∼2.57, while it demonstrates nanoaggregates with different work functions on top of flat surface areas for the sample grown with x∼3.16.

20.
ACS Appl Mater Interfaces ; 9(8): 7717-7724, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28165215

RESUMO

The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We report on a work function increase of almost 2 eV after inducing in situ crystallization of the films at 500 °C, resulting in the formation of a single crystalline α-MoO3 overlaid by substoichiometric and highly disordered nanoaggregates. The surface nanoaggregates possess various electronic properties, such as a work function ranging from 5.5 eV up to 6.2 eV, as determined from low-energy electron microscopy studies. The crystalline underlayer possesses a work function greater than 6.3 eV, up to 6.9 eV, characteristic of a very clean and nearly defect-free MoO3. By combining electronic spectroscopies together with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA