Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Front Physiol ; 12: 780666, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34955891

RESUMO

Acute exercise enhances circulating stem and precursor cells (CPCs) in the peripheral blood. The responsible mechanisms and molecular pathways, however, have not been fully identified. The aim of the present study was to investigate a pathway related to elevated levels of apoptotic peripheral blood mononuclear cells (MNCs) and their secretome. An increased uptake of miRNA126 in MNCs was suggested to lead to reduced levels of RGS16 mRNA and, in turn, an enhanced translation and secretion of CXCL12. Eighteen healthy, young men underwent two identical incremental cycling exercises of which the first served as control while the second was preceded by a 7-day-long antioxidative supplementation. Blood samples were collected at baseline (-10min) and several time points after exercise (0, 30, 90, 180, and 270min). Relative concentrations of miRNA126 in MNCs and CXCL12 levels in plasma were determined at all time points while RGS16 mRNA was assessed in MNCs at baseline and 30min after exercise. CXCL12 increased after exercise and strongly correlated with CPC numbers. MiRNA126 increased 30min and, to a lesser extent, also 180 and 270min after exercise but only with supplementation. RGS16 mRNA decreased 30min after exercise independent of the intervention. The amount of RGS16 mRNA inversely correlated with levels of miRNA126, but not with plasma CXCL12. In conclusion, even though plasma CXCL12 correlated with CPC numbers, the increase in CXCL12 cannot be explained by the increased concentration of miRNA126 and lower RGS16 mRNA in MNCs that would have allowed for an enhanced translation of CXCL12. Clinical Trial Registration: ClinicalTrials.gov, NCT03747913. Registered 20 November 2018, https://clinicaltrials.gov/ct2/show/NCT03747913.

4.
Front Physiol ; 11: 577540, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192581

RESUMO

Exercise is known to acutely and transiently mobilize precursor cells to the peripheral blood. To date, the underlying mechanisms have not yet been fully elucidated and we hypothesized that exercise-induced oxidative stress could be a mobilizing agent, either directly or via circulating apoptotic cells as mediators. The aim of the study was to assess the effect of acute exercise-induced oxidative stress on numbers of circulating angiogenic precursor cells (CACs), circulating non-angiogenic precursor cells (nCACs), mesenchymal precursor cells (MPCs), mature endothelial cells (ECs), and mononuclear cells (MNCs), as well as their apoptotic subsets. Healthy, young males (n = 18, age: 24.2 ± 3.5 years) completed two identical, standardized incremental cycling tests. The first, un-supplemented control test was followed by a 7-day-long supplementation of vitamin C (1,000 mg/day) and E (400 I.U./day), immediately preceding the second test. Blood samples were collected before, directly after, 30, 90, 180, and 270 min after exercise, and aforementioned circulating cell numbers were determined by flow cytometry and a hematology analyzer. Additionally, total oxidative capacity (TOC) and total antioxidative capacity (TAC) were measured in serum at all timepoints. Antioxidative supplementation abolished the exercise-induced increase in the oxidative stress index (TOC/TAC), and reduced baseline concentrations of TOC and TOC/TAC. However, it did not have any effect on CACs, nCACs, and MPC numbers or the increase in apoptotic MNCs following exercise. Our results indicate that exercise-induced oxidative stress is neither a main driver of lymphocyte and monocyte apoptosis, nor one of the mechanisms involved in the immediate or delayed mobilization of precursor cells.

5.
Stem Cell Res Ther ; 10(1): 305, 2019 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-31623690

RESUMO

BACKGROUND: Within the last years, the interest in physical exercise as non-invasive stimulus influencing circulating hematopoietic stem and progenitor cell (CPC) concentrations has constantly grown. Cell estimates are often derived by determining the subgroup of CPC as percent lymphocytes (LYM) or mononuclear cells (MNC) via flow cytometry and back calculation over whole blood (WB) cell counts. However, results might depend on the used cell isolation technique and/or gating strategy. We aimed to investigate MNC loss and apoptosis during the flow cytometry sample preparation process preceded by either density gradient centrifugation (DGC) or red blood cell lysis (RBCL) and the potential difference between results derived from back calculation at different stages of cell isolation and from WB. METHODS: Human blood was subjected to DGC and RBCL. Samples were stained for flow cytometry analysis of CPC (CD34+/CD45dim) and apoptosis analysis (Annexin V) of MNC and CPC subsets. MNC and LYM gating strategies were compared. RESULTS: Both DGC as well as RBCL yielded comparable CPC concentrations independent of the gating strategy when back calculated over WB values. However, cell loss and apoptosis differed between techniques, where after DGC LYM, and monocyte (MONO) concentrations significantly decreased (p < 0.01 and p < 0.05, respectively), while after RBCL LYM concentrations significantly decreased (p < 0.05) and MONO concentrations increased (p < 0.001). LYM apoptosis was comparable between techniques, but MONO apoptosis was higher after DGC than RBCL (p < 0.001). CONCLUSIONS: Investigated MNC counts (LYM/MONO ratio) after cell isolation and staining did not always mimic WB conditions. Thus, final CPC results should be corrected accordingly, especially when reporting live CPC concentrations after DGC; otherwise, the CPC regenerative potential in circulation could be biased. This is of high importance in the context of non-invasively induced CPC mobilization such as by acute physical exercise, since these cell changes are small and conclusions drawn from published results might affect further applications of physical exercise as non-invasive therapy.


Assuntos
Células Sanguíneas/citologia , Células-Tronco/citologia , Antígenos CD34/metabolismo , Contagem de Células Sanguíneas/métodos , Células Sanguíneas/metabolismo , Contagem de Células/métodos , Separação Celular/métodos , Exercício Físico/fisiologia , Citometria de Fluxo/métodos , Humanos , Antígenos Comuns de Leucócito/metabolismo , Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA