Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Bioengineering (Basel) ; 10(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38136023

RESUMO

Electroanatomical mapping is a method for creating a model of the electrophysiology of the human heart. Medical professionals routinely locate and ablate the site of origin of cardiac arrhythmias with invasive catheterization. Non-invasive localization takes the form of electrocardiographic (ECG) or magnetocardiographic (MCG) imaging, where the goal is to reconstruct the electrical activity of the human heart. Non-invasive alternatives to catheter electroanatomical mapping would reduce patients' risks and open new venues for treatment planning and prevention. This work introduces a new system state-based method for estimating the electrical activity of the human heart from MCG measurements. Our model enables arbitrary propagation paths and velocities. A Kalman filter optimally estimates the current densities under the given measurements and model parameters. In an outer optimization loop, these model parameters are then optimized via gradient descent. This paper aims to establish the foundation for future research by providing a detailed mathematical explanation of the algorithm. We demonstrate the feasibility of our method through a simplified one-layer simulation. Our results show that the algorithm can learn the propagation paths from the magnetic measurements. A threshold-based segmentation into healthy and pathological tissue yields a DICE score of 0.84, a recall of 0.77, and a precision of 0.93.

2.
Front Neurol ; 14: 1247532, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37909030

RESUMO

Introduction: The clinical assessment of mobility, and walking specifically, is still mainly based on functional tests that lack ecological validity. Thanks to inertial measurement units (IMUs), gait analysis is shifting to unsupervised monitoring in naturalistic and unconstrained settings. However, the extraction of clinically relevant gait parameters from IMU data often depends on heuristics-based algorithms that rely on empirically determined thresholds. These were mainly validated on small cohorts in supervised settings. Methods: Here, a deep learning (DL) algorithm was developed and validated for gait event detection in a heterogeneous population of different mobility-limiting disease cohorts and a cohort of healthy adults. Participants wore pressure insoles and IMUs on both feet for 2.5 h in their habitual environment. The raw accelerometer and gyroscope data from both feet were used as input to a deep convolutional neural network, while reference timings for gait events were based on the combined IMU and pressure insoles data. Results and discussion: The results showed a high-detection performance for initial contacts (ICs) (recall: 98%, precision: 96%) and final contacts (FCs) (recall: 99%, precision: 94%) and a maximum median time error of -0.02 s for ICs and 0.03 s for FCs. Subsequently derived temporal gait parameters were in good agreement with a pressure insoles-based reference with a maximum mean difference of 0.07, -0.07, and <0.01 s for stance, swing, and stride time, respectively. Thus, the DL algorithm is considered successful in detecting gait events in ecologically valid environments across different mobility-limiting diseases.

3.
Sensors (Basel) ; 23(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37050654

RESUMO

The swallowing process involves complex muscle coordination mechanisms. When alterations in such mechanisms are produced by neurological conditions or diseases, a swallowing disorder known as dysphagia occurs. The instrumental evaluation of dysphagia is currently performed by invasive and experience-dependent techniques. Otherwise, non-invasive magnetic methods have proven to be suitable for various biomedical applications and might also be applicable for an objective swallowing assessment. In this pilot study, we performed a novel approach for deglutition evaluation based on active magnetic motion sensing with permanent magnet cantilever actuators. During the intake of liquids with different consistency, we recorded magnetic signals of relative movements between a stationary sensor and a body-worn actuator on the cricoid cartilage. Our results indicate the detection capability of swallowing-related movements in terms of a characteristic pattern. Consequently, the proposed technique offers the potential for dysphagia screening and biofeedback-based therapies.


Assuntos
Transtornos de Deglutição , Sistemas Microeletromecânicos , Humanos , Transtornos de Deglutição/diagnóstico , Deglutição/fisiologia , Projetos Piloto , Fenômenos Magnéticos
4.
Sensors (Basel) ; 22(10)2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35632266

RESUMO

Many algorithms use 3D accelerometer and/or gyroscope data from inertial measurement unit (IMU) sensors to detect gait events (i.e., initial and final foot contact). However, these algorithms often require knowledge about sensor orientation and use empirically derived thresholds. As alignment cannot always be controlled for in ambulatory assessments, methods are needed that require little knowledge on sensor location and orientation, e.g., a convolutional neural network-based deep learning model. Therefore, 157 participants from healthy and neurologically diseased cohorts walked 5 m distances at slow, preferred, and fast walking speed, while data were collected from IMUs on the left and right ankle and shank. Gait events were detected and stride parameters were extracted using a deep learning model and an optoelectronic motion capture (OMC) system for reference. The deep learning model consisted of convolutional layers using dilated convolutions, followed by two independent fully connected layers to predict whether a time step corresponded to the event of initial contact (IC) or final contact (FC), respectively. Results showed a high detection rate for both initial and final contacts across sensor locations (recall ≥92%, precision ≥97%). Time agreement was excellent as witnessed from the median time error (0.005 s) and corresponding inter-quartile range (0.020 s). The extracted stride-specific parameters were in good agreement with parameters derived from the OMC system (maximum mean difference 0.003 s and corresponding maximum limits of agreement (-0.049 s, 0.051 s) for a 95% confidence level). Thus, the deep learning approach was considered a valid approach for detecting gait events and extracting stride-specific parameters with little knowledge on exact IMU location and orientation in conditions with and without walking pathologies due to neurological diseases.


Assuntos
Aprendizado Profundo , Tornozelo , , Marcha , Humanos , Caminhada
5.
Biomed Tech (Berl) ; 67(2): 119-130, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218686

RESUMO

The process of diagnosing tremor patients often leads to misdiagnoses. Therefore, existing technical methods for analysing tremor are needed to more effectively distinguish between different diseases. For this purpose, a system has been developed that classifies measured tremor signals in real time. To achieve this, the hand tremor of 561 subjects has been measured in different hand positions. Acceleration and surface electromyography are recorded during the examination. For this study, data from subjects with Parkinson's Disease, Essential Tremor, and physiological tremor are considered. In a first signal analysis feature extraction is performed, and the resulting features are examined for their discriminative value. In a second step, three classification models based on different pattern recognition techniques are developed to classify the subjects with respect to their tremor type. With a trained decision tree, the three tremor types can be classified with a relative diagnostic accuracy of 83.14%. A neural network achieves 84.24% and the combination of both classifiers yields a relative diagnostic accuracy of 85.76%. The approach is promising and involving more features of the recorded time series will improve the discriminative value.


Assuntos
Tremor Essencial , Doença de Parkinson , Eletromiografia/métodos , Tremor Essencial/diagnóstico , Mãos , Humanos , Doença de Parkinson/diagnóstico , Tremor/diagnóstico
6.
Sensors (Basel) ; 22(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161764

RESUMO

Dedicated research is currently being conducted on novel thin film magnetoelectric (ME) sensor concepts for medical applications. These concepts enable a contactless magnetic signal acquisition in the presence of large interference fields such as the magnetic field of the Earth and are operational at room temperature. As more and more different ME sensor concepts are accessible to medical applications, the need for comparative quality metrics significantly arises. For a medical application, both the specification of the sensor itself and the specification of the readout scheme must be considered. Therefore, from a medical user's perspective, a system consideration is better suited to specific quantitative measures that consider the sensor readout scheme as well. The corresponding sensor system evaluation should be performed in reproducible measurement conditions (e.g., magnetically, electrically and acoustically shielded environment). Within this contribution, an ME sensor system evaluation scheme will be described and discussed. The quantitative measures will be determined exemplarily for two ME sensors: a resonant ME sensor and an electrically modulated ME sensor. In addition, an application-related signal evaluation scheme will be introduced and exemplified for cardiovascular application. The utilized prototype signal is based on a magnetocardiogram (MCG), which was recorded with a superconducting quantum-interference device. As a potential figure of merit for a quantitative signal assessment, an application specific capacity (ASC) is introduced. In conclusion, this contribution highlights metrics for the quantitative characterization of ME sensor systems and their resulting output signals in biomagnetism. Finally, different ASC values and signal-to-noise ratios (SNRs) could be clearly presented for the resonant ME sensor (SNR: -90 dB, ASC: 9.8×10-7 dB Hz) and also the electrically modulated ME sensor (SNR: -11 dB, ASC: 23 dB Hz), showing that the electrically modulated ME sensor is better suited for a possible MCG application under ideal conditions. The presented approach is transferable to other magnetic sensors and applications.


Assuntos
Coração , Campos Magnéticos , Magnetismo , Razão Sinal-Ruído
7.
Sensors (Basel) ; 21(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884009

RESUMO

Magnetoelectric (ME) sensors with a form factor of a few millimeters offer a comparatively low magnetic noise density of a few pT/Hz in a narrow frequency band near the first bending mode. While a high resonance frequency (kHz range) and limited bandwidth present a challenge to biomagnetic measurements, they can potentially be exploited in indirect sensing of non-magnetic quantities, where artificial magnetic sources are applicable. In this paper, we present the novel concept of an active magnetic motion sensing system optimized for ME sensors. Based on the signal chain, we investigated and quantified key drivers of the signal-to-noise ratio (SNR), which is closely related to sensor noise and bandwidth. These considerations were demonstrated by corresponding measurements in a simplified one-dimensional motion setup. Accordingly, we introduced a customized filter structure that enables a flexible bandwidth selection as well as a frequency-based separation of multiple artificial sources. Both design goals target the prospective application of ME sensors in medical movement analysis, where a multitude of distributed sensors and sources might be applied.


Assuntos
Benchmarking , Movimento , Movimento (Física) , Ruído , Razão Sinal-Ruído
8.
Sensors (Basel) ; 21(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34770664

RESUMO

A major challenge in modern society is the need to increase awareness and excitement with regard to science, technology, engineering and mathematics (STEM) and related careers directly or among peers and parents in order to attract future generations of scientists and engineers. The numbers of students aiming for an engineering degree are low compared to the options available and the workforce needed. This may, in part, be due to a traditional lack of instruction in this area in secondary school curricula. In this regard, STEM outreach programs can complement formal learning settings and help to promote engineering as well as science to school students. In a long-term outreach collaboration with scientists and engineers, we developed an outreach program in the field of magnetoelectric sensing that includes an out-of-school project day and various accompanying teaching materials. In this article, we motivate the relevance of the topic for educational outreach, share the rationales, objectives and aims, models and implementation strategies of our program and provide practical advice for those interested in outreach in the field of magnetoelectric sensing.


Assuntos
Engenharia , Tecnologia , Humanos , Matemática , Instituições Acadêmicas , Estudantes
9.
NPJ Parkinsons Dis ; 7(1): 89, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34611152

RESUMO

The evidence of the responsiveness of dopaminergic medication on gait in patients with Parkinson's disease is contradicting. This could be due to differences in complexity of the context gait was in performed. This study analysed the effect of dopaminergic medication on arm swing, an important movement during walking, in different contexts. Forty-five patients with Parkinson's disease were measured when walking at preferred speed, fast speed, and dual-tasking conditions in both OFF and ON medication states. At preferred, and even more at fast speed, arm swing improved with medication. However, during dual-tasking, there were only small or even negative effects of medication on arm swing. Assuming that dual-task walking most closely reflects real-life situations, the results suggest that the effect of dopaminergic medication on mobility-relevant movements, such as arm swing, might be small in everyday conditions. This should motivate further studies to look at medication effects on mobility in Parkinson's disease, as it could have highly relevant implications for Parkinson's disease treatment and counselling.

10.
Sensors (Basel) ; 21(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451116

RESUMO

The knowledge of the exact position and orientation of a sensor with respect to a source (distribution) is essential for the correct solution of inverse problems. Especially when measuring with magnetic field sensors, the positions and orientations of the sensors are not always fixed during measurements. In this study, we present a processing chain for the localization of magnetic field sensors in real time. This includes preprocessing steps, such as equalizing and matched filtering, an iterative localization approach, and postprocessing steps for smoothing the localization outcomes over time. We show the efficiency of this localization pipeline using an exchange bias magnetoelectric sensor. For the proof of principle, the potential of the proposed algorithm performing the localization in the two-dimensional space is investigated. Nevertheless, the algorithm can be easily extended to the three-dimensional space. Using the proposed pipeline, we achieve average localization errors between 1.12 cm and 6.90 cm in a localization area of size 50cm×50cm.

11.
J Neuroeng Rehabil ; 18(1): 28, 2021 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-33549105

RESUMO

BACKGROUND: Identification of individual gait events is essential for clinical gait analysis, because it can be used for diagnostic purposes or tracking disease progression in neurological diseases such as Parkinson's disease. Previous research has shown that gait events can be detected from a shank-mounted inertial measurement unit (IMU), however detection performance was often evaluated only from straight-line walking. For use in daily life, the detection performance needs to be evaluated in curved walking and turning as well as in single-task and dual-task conditions. METHODS: Participants (older adults, people with Parkinson's disease, or people who had suffered from a stroke) performed three different walking trials: (1) straight-line walking, (2) slalom walking, (3) Stroop-and-walk trial. An optical motion capture system was used a reference system. Markers were attached to the heel and toe regions of the shoe, and participants wore IMUs on the lateral sides of both shanks. The angular velocity of the shank IMUs was used to detect instances of initial foot contact (IC) and final foot contact (FC), which were compared to reference values obtained from the marker trajectories. RESULTS: The detection method showed high recall, precision and F1 scores in different populations for both initial contacts and final contacts during straight-line walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 100%, F1 score [Formula: see text] 100%), slalom walking (IC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%; FC: recall [Formula: see text] 100%, precision [Formula: see text] 99%, F1 score [Formula: see text]100%), and turning (IC: recall [Formula: see text] 85%, precision [Formula: see text] 95%, F1 score [Formula: see text]91%; FC: recall [Formula: see text] 84%, precision [Formula: see text] 95%, F1 score [Formula: see text]89%). CONCLUSIONS: Shank-mounted IMUs can be used to detect gait events during straight-line walking, slalom walking and turning. However, more false events were observed during turning and more events were missed during turning. For use in daily life we recommend identifying turning before extracting temporal gait parameters from identified gait events.


Assuntos
Análise da Marcha/instrumentação , Doença de Parkinson/fisiopatologia , Acidente Vascular Cerebral/fisiopatologia , Caminhada/fisiologia , Dispositivos Eletrônicos Vestíveis , Idoso , Feminino , , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
12.
Sensors (Basel) ; 20(20)2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33096899

RESUMO

Neurological pathologies can alter the swinging movement of the arms during walking. The quantification of arm swings has therefore a high clinical relevance. This study developed and validated a wearable sensor-based arm swing algorithm for healthy adults and patients with Parkinson's disease (PwP). Arm swings of 15 healthy adults and 13 PwP were evaluated (i) with wearable sensors on each wrist while walking on a treadmill, and (ii) with reflective markers for optical motion capture fixed on top of the respective sensor for validation purposes. The gyroscope data from the wearable sensors were used to calculate several arm swing parameters, including amplitude and peak angular velocity. Arm swing amplitude and peak angular velocity were extracted with systematic errors ranging from 0.1 to 0.5° and from -0.3 to 0.3°/s, respectively. These extracted parameters were significantly different between healthy adults and PwP as expected based on the literature. An accurate algorithm was developed that can be used in both clinical and daily-living situations. This algorithm provides the basis for the use of wearable sensor-extracted arm swing parameters in healthy adults and patients with movement disorders such as Parkinson's disease.


Assuntos
Doença de Parkinson , Dispositivos Eletrônicos Vestíveis , Adulto , Idoso , Algoritmos , Braço , Marcha , Humanos , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Caminhada
13.
Artigo em Alemão | MEDLINE | ID: mdl-32072217

RESUMO

Physical fitness is defined as an individual's ability to be physically active. The main components are cardiorespiratory fitness (CRF), muscle strength, and flexibility. Regardless of physical activity level, physical fitness is an important determinant of morbidity and mortality.The aim of the current study was to describe the physical fitness assessment methodology in the German National Cohort (NAKO) and to present initial descriptive results in a subsample of the cohort.In the NAKO, hand grip strength (GS) and CRF as physical fitness components were assessed at baseline using a hand dynamometer and a submaximal bicycle ergometer test, respectively. Maximum oxygen uptake (VO2max) was estimated as a result of the bicycle ergometer test. The results of a total of 99,068 GS measurements and 3094 CRF measurements are based on a data set at halftime of the NAKO baseline survey (age 20-73 years, 47% men).Males showed higher values of physical fitness compared to women (males: GS = 47.8 kg, VO2max = 36.4 ml·min-1 · kg-1; females: GS = 29.9 kg, VO2max = 32.3 ml · min-1 · kg-1). GS declined from the age of 50 onwards, whereas VO2max levels decreased continuously between the age groups of 20-29 and ≥60 years. GS and VO2max showed a linear positive association after adjustment for body weight (males ß = 0.21; females ß = 0.35).These results indicate that the physical fitness measured in the NAKO are comparable to other population-based studies. Future analyses in this study will focus on examining the independent relations of GS and CRF with risk of morbidity and mortality.


Assuntos
Teste de Esforço , Aptidão Física , Adulto , Feminino , Alemanha , Força da Mão , Humanos , Masculino , Oxigênio , Consumo de Oxigênio , Adulto Jovem
14.
Lancet Neurol ; 19(5): 462-470, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32059811

RESUMO

Mobile health technologies (wearable, portable, body-fixed sensors, or domestic-integrated devices) that quantify mobility in unsupervised, daily living environments are emerging as complementary clinical assessments. Data collected in these ecologically valid, patient-relevant settings can overcome limitations of conventional clinical assessments, as they capture fluctuating and rare events. These data could support clinical decision making and could also serve as outcomes in clinical trials. However, studies that directly compared assessments made in unsupervised and supervised (eg, in the laboratory or hospital) settings point to large disparities, even in the same parameters of mobility. These differences appear to be affected by psychological, physiological, cognitive, environmental, and technical factors, and by the types of mobilities and diagnoses assessed. To facilitate the successful adaptation of the unsupervised assessment of mobility into clinical practice and clinical trials, clinicians and researchers should consider these disparities and the multiple factors that contribute to them.


Assuntos
Atividades Cotidianas , Limitação da Mobilidade , Transtornos dos Movimentos/fisiopatologia , Telemedicina , Humanos
15.
IEEE Trans Neural Syst Rehabil Eng ; 28(3): 756-765, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31976901

RESUMO

OBJECTIVE: Electroneurography has been an essential method for assessing peripheral nerve disorders for decades. During this procedure, a nerve is briefly electrically excited, and nerve conduction properties are identified by indirect means from the behavior of the innervated muscle. The magnetic field of the resulting muscle response can also be recorded by novel, uncooled magnetometers, which have become very attractive for different medical applications over recent years. These highly sensitive magnetometers are called optically pumped magnetometers. METHODS: We performed unaveraged and averaged magnetic signal detection of electrically evoked muscle responses using optically pumped magnetometers. We then discussed the suitability of this procedure for clinical applications in the context of diagnostic value and in direct comparison with the current electrical gold standard. RESULTS: The magnetic detection of muscle responses is possible using optically pumped magnetometers. Our magnetic results (averaged and unaveraged) closely match those from electrical measurements. CONCLUSION: Optically pumped magnetometers provide an alternative, contactless technology for electrode-based motor studies, but they are currently not ready for routine clinical use. This costly technology requires additional earth magnetic shielding because this is a prerequisite for proper operation. Currently, there are no diagnostic advantages over electrical measurements. Additionally, the required measurement setup and procedure are much more complicated. SIGNIFICANCE: In contrast to already published proof-of-principle studies for magnetomyography, we report in detail the results of the magnetic measurements of electrically evoked muscle responses in a shielded environment by applying supramaximal stimulation and finally validate our findings with electroneurography data as a reference.


Assuntos
Campos Magnéticos , Magnetismo , Humanos , Músculos
16.
IEEE Trans Biomed Eng ; 67(7): 2094-2102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751220

RESUMO

OBJECTIVE: Electroneurography is a well-established diagnostic test for supporting the diagnosis of disorders of myelinated peripheral nerves. Neurophysiological quantities are automatically calculated and are used to determine the pathology of the nerve (axonal damage) or its sheath (myelin damage). Specific differential diagnostic criteria are derived from time-domain normative data, which result primarily from a computer simulation in the early 1990s based on animal data, namely rats. However, the rat signals studied differ significantly from those of humans because of anatomical differences. METHODS: We present a model-based simulation of nerve conduction in healthy and pathological motor nerves. In contrast to earlier simulations, the present model is based on motor unit action potentials extracted from real human measurements facilitating the generation of realistic signals, starting from a conduction velocity distribution. In addition to the modeling of healthy nerves, we model a hereditary peripheral nerve disease as well as an acute and a chronic inflammatory demyelinating condition. RESULTS: Quantitative signal differences based on standard variables in the time-domain are presented. The findings for the demyelinating conditions demonstrate amplitude reductions of 71% and 65% between the distal and proximal responses, which result from an increase in the variance of the nerve fiber conduction velocities. CONCLUSION: The simulation results closely match those of empirical measurements, indicating that the signal model captures relevant pathological mechanisms. An amplitude reduction of more than 50% in demyelinating conditions is in accordance with routine measurements and shows that temporal dispersion is quite well-modeled compared to previous simulation models. SIGNIFICANCE: The simulation outcomes can serve as the basis for an improved pathophysiological understanding of peripheral nerve disorders and should aid neurophysiologists to refine their diagnostic armamentarium resulting in a more precise differential diagnosis.


Assuntos
Condução Nervosa , Doenças do Sistema Nervoso Periférico , Potenciais de Ação , Animais , Axônios , Simulação por Computador , Nervos Periféricos , Ratos
17.
Neurorehabil Neural Repair ; 32(12): 1055-1066, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30444176

RESUMO

BACKGROUND: Hypokinetic dysarthria is highly prevalent in idiopathic Parkinson disease (PD), and effectiveness of high-intensity voice treatment is well established. However, the neural correlates remain largely unknown. OBJECTIVE: We aimed to specify cerebral pathophysiology of hypokinetic dysarthria and treatment-induced changes using functional magnetic resonance imaging (fMRI). METHODS: We used fMRI to investigate healthy controls (HCs) and patients with idiopathic PD-associated dysarthria before and after treatment according to the Lee Silverman Voice Treatment LOUD (LSVT). During fMRI, participants covertly read sentences with normal (eg, conversation in a quiet room) or high (eg, shouting on a windy beach) intensity. In addition, we tested LSVT effects on intelligibility and different speech features (intensity, pitch, articulation). RESULTS: LSVT effectively improved intelligibility, articulation, and pitch in patients. Covert high-intensity speech compared with covert normal-intensity speech led to increased activation of mainly secondary motor areas and bilateral superior and medial temporal regions. Prior to LSVT, patients showed less activity in several speech-associated areas compared with HCs. As a neural correlate of effective LSVT, increased right-sided superior temporal activity correlated with improved intelligibility. CONCLUSION: This is the first brain imaging study using a covert speech paradigm in PD, which revealed cortical hypoactivation as correlate of hypokinetic dysarthria. Furthermore, cortical correlates of effective LSVT treatment colocalized with the neuronal network, showing increased activation during high- versus normal-intensity speech generation.


Assuntos
Encéfalo/fisiopatologia , Disartria/fisiopatologia , Disartria/terapia , Doença de Parkinson/fisiopatologia , Idoso , Encéfalo/diagnóstico por imagem , Disartria/diagnóstico por imagem , Disartria/etiologia , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Fonoterapia/métodos , Resultado do Tratamento
18.
Front Neurol ; 9: 652, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30158894

RESUMO

Introduction: Impaired sit-to-stand and stand-to-sit movements (postural transitions, PTs) in patients with Parkinson's disease (PD) and older adults (OA) are associated with risk of falling and reduced quality of life. Inertial measurement units (IMUs, also called "wearables") are powerful tools to monitor PT kinematics. The purpose of this study was to develop and validate an algorithm, based on a single IMU positioned at the lower back, for PT detection and description in the above-mentioned groups in a home-like environment. Methods: Four PD patients (two with dyskinesia) and one OA served as algorithm training group, and 21 PD patients (16 without and 5 with dyskinesia) and 11 OA served as test group. All wore an IMU on the lower back and were videotaped while performing everyday activities for 90-180 min in a non-standardized home-like environment. Accelerometer and gyroscope signals were analyzed using discrete wavelet transformation (DWT), a six degrees-of-freedom (DOF) fusion algorithm and vertical displacement estimation. Results: From the test group, 1,001 PTs, defined by video reference, were analyzed. The accuracy of the algorithm for the detection of PTs against video observation was 82% for PD patients without dyskinesia, 47% for PD patients with dyskinesia and 85% for OA. The overall accuracy of the PT direction detection was comparable across groups and yielded 98%. Mean PT duration values were 1.96 s for PD patients and 1.74 s for OA based on the algorithm (p < 0.001) and 1.77 s for PD patients and 1.51 s for OA based on clinical observation (p < 0.001). Conclusion: Validation of the PT detection algorithm in a home-like environment shows acceptable accuracy against the video reference in PD patients without dyskinesia and controls. Current limitations are the PT detection in PD patients with dyskinesia and the use of video observation as the video reference. Potential reasons are discussed.

19.
Sci Rep ; 8(1): 278, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29321540

RESUMO

We present a comprehensive study of a magnetic sensor system that benefits from a new technique to substantially increase the magnetoelastic coupling of surface acoustic waves (SAW). The device uses shear horizontal acoustic surface waves that are guided by a fused silica layer with an amorphous magnetostrictive FeCoSiB thin film on top. The velocity of these so-called Love waves follows the magnetoelastically-induced changes of the shear modulus according to the magnetic field present. The SAW sensor is operated in a delay line configuration at approximately 150 MHz and translates the magnetic field to a time delay and a related phase shift. The fundamentals of this sensor concept are motivated by magnetic and mechanical simulations. They are experimentally verified using customized low-noise readout electronics. With an extremely low magnetic noise level of ≈100 pT/[Formula: see text], a bandwidth of 50 kHz and a dynamic range of 120 dB, this magnetic field sensor system shows outstanding characteristics. A range of additional measures to further increase the sensitivity are investigated with simulations.

20.
Front Neurol ; 8: 457, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928711

RESUMO

INTRODUCTION: Inertial measurement units (IMUs) positioned on various body locations allow detailed gait analysis even under unconstrained conditions. From a medical perspective, the assessment of vulnerable populations is of particular relevance, especially in the daily-life environment. Gait analysis algorithms need thorough validation, as many chronic diseases show specific and even unique gait patterns. The aim of this study was therefore to validate an acceleration-based step detection algorithm for patients with Parkinson's disease (PD) and older adults in both a lab-based and home-like environment. METHODS: In this prospective observational study, data were captured from a single 6-degrees of freedom IMU (APDM) (3DOF accelerometer and 3DOF gyroscope) worn on the lower back. Detection of heel strike (HS) and toe off (TO) on a treadmill was validated against an optoelectronic system (Vicon) (11 PD patients and 12 older adults). A second independent validation study in the home-like environment was performed against video observation (20 PD patients and 12 older adults) and included step counting during turning and non-turning, defined with a previously published algorithm. RESULTS: A continuous wavelet transform (cwt)-based algorithm was developed for step detection with very high agreement with the optoelectronic system. HS detection in PD patients/older adults, respectively, reached 99/99% accuracy. Similar results were obtained for TO (99/100%). In HS detection, Bland-Altman plots showed a mean difference of 0.002 s [95% confidence interval (CI) -0.09 to 0.10] between the algorithm and the optoelectronic system. The Bland-Altman plot for TO detection showed mean differences of 0.00 s (95% CI -0.12 to 0.12). In the home-like assessment, the algorithm for detection of occurrence of steps during turning reached 90% (PD patients)/90% (older adults) sensitivity, 83/88% specificity, and 88/89% accuracy. The detection of steps during non-turning phases reached 91/91% sensitivity, 90/90% specificity, and 91/91% accuracy. CONCLUSION: This cwt-based algorithm for step detection measured at the lower back is in high agreement with the optoelectronic system in both PD patients and older adults. This approach and algorithm thus could provide a valuable tool for future research on home-based gait analysis in these vulnerable cohorts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA