Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pediatr Dev Pathol ; : 10935266241279073, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248342

RESUMO

Pediatric angiosarcoma of soft tissue, an extremely rare entity, remains poorly understood from a genetic standpoint. Herein, we present the case of a previously healthy 17-year-old girl with acute left hip pain. Subsequent magnetic resonance imaging revealed a 21.8 cm left pelvic sidewall mass with heterogeneous enhancement and multiple lung nodules. Biopsy of the tumor showed an infiltrative, hemorrhagic neoplasm composed primarily of atypical spindle to epithelioid cells. Focal vasoformative architecture was appreciated. Immunohistochemically, the tumor cells were strongly positive for CD31, ERG, and FLI-1, supporting the diagnosis of angiosarcoma. Genetic analysis identified a novel TEK::GAB2 gene fusion. TEK belongs to the angiopoietin receptor family, and its fusion with GAB2 is predicted to mediate tumorigenesis. This report expands the current knowledge on the spectrum of gene rearrangements of angiosarcoma.

2.
Transl Pediatr ; 13(4): 624-633, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38715664

RESUMO

Background: DICER1-associated tumors are heterogeneous and affect several organs. DICER1-associated primary intracranial sarcoma is associated with histone H3 trimethylation on lysine 27 (H3K27me3) loss in nucleus by immunohistochemistry. Methods: We explored the H3K27me3 immunostaining pattern in other DICER1-associated tumors. Twelve tumors from eleven patients with confirmed DICER1 mutations (sporadic and germline) data from a pancancer next-generation sequencing panel, and four tumors of pleuropulmonary blastoma (PPB) were retrieved from our database and stained with anti-H3K27me3 antibody. Results: The H3K27me3 expression in the nucleus showed heterogeneous mosaic loss in neoplastic Sertoli cell components in three of the five cases of moderately to poorly differentiated Sertoli-Leydig cell tumors. Among two tumors of DICER1-associated primary intracranial sarcoma, one showed complete loss of H3K27me3 in all neoplastic cells, whereas the other showed mosaic loss in the sarcomatous spindle cells. One DICER1-associated tumor with epithelial and mesenchymal differentiation, including pulmonary blastoma and PPB, showed mosaic loss of glandular epithelial and mesenchymal components. Four cases of type II PPB and a single case of type III PPB showed a similar mosaic loss of H3K27me3 staining restricted to large spindle cell components. All other components in all tumors-including Leydig cells; the areas of epithelial, cartilaginous, and rhabdomyomatous differentiation; and all cells of the remaining three cases (one papillary thyroid carcinoma and two cases of PPB type I)-demonstrated retained H3K27me3 staining. Conclusions: H3K27me3 expression is not universally lost in DICER1-associated tumors and thus is not predictive of DICER1 mutation status. The mosaic regional loss of H3K27me3 immunostaining is consistent in PPB type II and III, which can be a helpful diagnostic marker for these tumors and suggests a similarity to DICER1-associated intracranial sarcoma.

3.
J Mol Diagn ; 26(5): 337-348, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38360210

RESUMO

Several in silico annotation-based methods have been developed to prioritize variants in exome sequencing analysis. This study introduced a novel metric Significance Associated with Phenotypes (SAP) score, which generates a statistical score by comparing an individual's observed phenotypes against existing gene-phenotype associations. To evaluate the SAP score, a retrospective analysis was performed on 219 exomes. Among them, 82 family-based and 35 singleton exomes had at least one disease-causing variant that explained the patient's clinical features. SAP scores were calculated, and the rank of the disease-causing variant was compared with a known method, Exomiser. Using the SAP score, the known causative variant was ranked in the top 10 retained variants for 94% (77 of 82) of the family-based exomes and in first place for 73% of these cases. For singleton exomes, the SAP score analysis ranked the known pathogenic variants within the top 10 for 80% (28 of 35) of cases. The SAP score, which is independent of detected variants, demonstrates comparable performance with Exomiser, which considers both phenotype and variant-level evidence simultaneously. Among 102 cases with negative results or variants of uncertain significance, SAP score analysis revealed two cases with a potential new diagnosis based on rank. The SAP score, a phenotypic quantitative metric, can be used in conjunction with standard variant filtration and annotation to enhance variant prioritization in exome analysis.


Assuntos
Bases de Dados Genéticas , Testes Genéticos , Humanos , Sequenciamento do Exoma , Estudos Retrospectivos , Fenótipo
4.
J Mol Diagn ; 26(1): 49-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981088

RESUMO

Studies have shown the power of transcriptome sequencing [RNA sequencing (RNA-Seq)] in identifying known and novel oncogenic drivers and molecular subtypes of B-acute lymphoblastic leukemia (B-ALL). The current study investigated whether the clinically validated RNA-Seq assay, coupled with a custom analysis pipeline, could be used for a comprehensive B-ALL classification. Following comprehensive clinical testing, RNA-Seq was performed on 76 retrospective B-ALL cases, 28 of which had known and 48 had undetermined subtype. Subtypes were accurately identified in all 28 known cases, and in 38 of 48 unknown cases (79%). The subtypes of the unknown cases included the following: PAX5alt (n = 12), DUX4-rearranged (n = 6), Philadelphia chromosome-like (n = 5), low hyperdiploid (n = 4), ETV6::RUNX1-like (n = 3), MEF2D-rearranged (n = 2), PAX5 P80R (n = 2), ZEB2/CEBP (n = 1), NUTM1-rearranged (n = 1), ZNF384-rearranged (n = 1), and TCF3::PBX1 (n = 1). In 15 of 38 cases (39%), classification based on expression profile was corroborated by detection of subtype-defining oncogenic drivers missed by clinical testing. RNA-Seq analysis also detected large copy number abnormalities, oncogenic hot-spot sequence variants, and intragenic IKZF1 deletions. This pilot study confirms the feasibility of implementing an RNA-Seq workflow for clinical diagnosis of molecular subtypes in pediatric B-ALL, reinforcing that RNA-Seq represents a promising global genomic assay for this heterogeneous leukemia.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Transcriptoma , Criança , Humanos , Transcriptoma/genética , Estudos Retrospectivos , Laboratórios Clínicos , Projetos Piloto , Proteínas de Fusão Oncogênica/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Genômica
5.
Genet Med ; 26(3): 101036, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38054408

RESUMO

PURPOSE: Genetic variants at the low end of the penetrance spectrum have historically been challenging to interpret because their high population frequencies exceed the disease prevalence of the associated condition, leading to a lack of clear segregation between the variant and disease. There is currently substantial variation in the classification of these variants, and no formal classification framework has been widely adopted. The Clinical Genome Resource Low Penetrance/Risk Allele Working Group was formed to address these challenges and promote harmonization within the clinical community. METHODS: The work presented here is the product of internal and community Likert-scaled surveys in combination with expert consensus within the Working Group. RESULTS: We formally recognize risk alleles and low-penetrance variants as distinct variant classes from those causing highly penetrant disease that require special considerations regarding their clinical classification and reporting. First, we provide a preferred terminology for these variants. Second, we focus on risk alleles and detail considerations for reviewing relevant studies and present a framework for the classification these variants. Finally, we discuss considerations for clinical reporting of risk alleles. CONCLUSION: These recommendations support harmonized interpretation, classification, and reporting of variants at the low end of the penetrance spectrum.


Assuntos
Variação Genética , Humanos , Alelos , Variação Genética/genética , Penetrância , Frequência do Gene
6.
J Mol Diagn ; 26(2): 127-139, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38008288

RESUMO

This study reports the development of an exome capture-based RNA-sequencing assay to detect recurring and novel fusions in hematologic, solid, and central nervous system tumors. The assay used Twist Comprehensive Exome capture with either fresh or formalin-fixed samples and a bioinformatic platform that provides fusion detection, prioritization, and downstream curation. A minimum of 50 million uniquely mapped reads, a consensus read alignment/fusion calling approach using four callers (Arriba, FusionCatcher, STAR-Fusion, and Dragen), and custom software were used to integrate, annotate, and rank the candidate fusion calls. In an evaluation of 50 samples, the number of calls varied substantially by caller, from a mean of 24.8 with STAR-Fusion to 259.6 with FusionCatcher; only 1.1% of calls were made by all four callers. Therefore a filtering and ranking algorithm was developed based on multiple criteria, including number of supporting reads, calling consensus, genes involved, and cross-reference against databases of known cancer-associated or likely false-positive fusions. This approach was highly effective in pinpointing known clinically relevant fusions, ranking them first in 47 of 50 samples (94%). Detection of pathogenic gene fusions in three diagnostically challenging cases highlights the importance of a genome-wide and nontargeted method for fusion detection in pediatric cancer.


Assuntos
Exoma , Neoplasias , Criança , Humanos , Exoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Software , RNA , Fusão Gênica
7.
Am J Surg Pathol ; 48(2): 194-203, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37946548

RESUMO

Sertoli-Leydig cell tumors (SLCTs) are currently classified into 3 molecular subtypes: DICER1 -mutant (younger patient age), FOXL2 -mutant, and DICER1/FOXL2 -wildtype. However, it is not clear whether all pediatric SLCTs are DICER1 -mutant molecular subtypes and whether other molecular genetic aberrations besides DICER1 are involved in the pathogenesis and prognosis of these tumors. We studied comprehensive data for 8 cases of pediatric SLCTs, including clinicopathological features, pan-cancer-targeted next-generation sequencing/OncoKids panel, and chromosomal microarray analysis, to further analyze the correlation among clinicopathological features, molecular genetic aberrations, and prognosis. The ages of the patients ranged from 4 to 16 years (median, 14 y). Seven cases were moderately differentiated, and one was poorly differentiated with heterologous mesenchymal elements. Two cases had heterologous epithelium or retiform elements. Follow-up was available for all 8 patients (median, 49.5 mo). Seven patients were alive without evidence of recurrence or metastasis, and only case 5 developed metastases (synchronous bilateral pulmonary tumors with rhabdomyosarcomatous differentiation). All 8 tumors were found to harbor somatic hotspot DICER1 mutations, and 5 patients carried germline DICER1 mutations (2 of them had the phenotype of DICER1 syndrome). Together with recent studies, the DICER1 mutation frequency is 100% in pediatric SLCTs (n=27, age≤16 y). Copy number alterations were detected in 3 tumors; the only recurrent copy number alterations was the gain of whole chromosome 6 in case 5 and case 8. This is the first report describing clinicopathological features and molecular alterations in pediatric SLCTs. Our results demonstrate that all pediatric SLCTs belong to the DICER1 -mutant molecular subtype, highlighting that somatic hotspot DICER1 mutation detection has high sensitivity (100%) for the auxiliary diagnosis of pediatric SLCTs (age ≤16 y). Some pediatric SLCTs harbor molecular genetic aberrations other than DICER1 mutation, and their significance needs further study.


Assuntos
Neoplasias Ovarianas , Tumor de Células de Sertoli-Leydig , Masculino , Feminino , Humanos , Criança , Adolescente , Tumor de Células de Sertoli-Leydig/genética , Tumor de Células de Sertoli-Leydig/patologia , Neoplasias Ovarianas/patologia , Mutação , Ribonuclease III/genética , Sequenciamento de Nucleotídeos em Larga Escala , RNA Helicases DEAD-box/genética
8.
Mod Pathol ; 37(2): 100385, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992967

RESUMO

Accurate diagnosis and treatment of hepatocellular neoplasm, not otherwise specified (HCN-NOS), poses significant challenges. Our study aimed to investigate the clinicopathologic and genomic similarities and differences between HCN-NOS and hepatoblastoma (HB) to guide diagnostic and treatment strategies. The clinicopathologic characteristics of 16 patients with HCN-NOS and 23 patients with HB were compared. Molecular studies, including the OncoKids DNA- and RNA-based next-generation sequencing panel, chromosomal microarray, and targeted Sanger sequencing analyses of CTNNB1 and TERT promoters, were employed. We found that patients with HCN-NOS were older (P < .001) and more frequently classified as high risk (P < .01), yet they showed no significant differences in alpha fetoprotein levels or survival outcomes compared with those with HB. HCN-NOS and HB had a comparable frequency of sequence variants, with CTNNB1 mutations being predominant in both groups. Notably, TERT promoter mutations (37.5%) and rare clinically significant variants (BRAF, NRAS, and KMT2D) were exclusive to HCN-NOS. HCN-NOS demonstrated a higher prevalence of gains in 1q, encompassing the MDM4 locus (17/17 vs 11/24; P < .001), as well as loss/loss of heterozygosity (LOH) of 1p (11/17 vs 6/24; P < .05) and chromosome 11 (7/17 vs 1/24; P < .01) when compared with HB. Furthermore, the recurrent loss/LOH of chromosomes 3, 4p, 9, 15q, and Y was only observed in HCN-NOS. However, no significant differences were noted in gains of chromosomes 2, 8, and 20, or loss/LOH of 4q and 11p between the 2 groups. Notably, no clinically significant gene fusions were detected in either group. In conclusion, our study reveals that HCN-NOS exhibits high-risk clinicopathologic features and greater structural complexity compared with HB. However, patients with HCN-NOS exhibit comparable alpha fetoprotein levels at diagnosis, CTNNB1 mutation rates, and survival outcomes when subjected to aggressive treatment, as compared with those with HB. These findings have the potential to enhance diagnostic accuracy and inform more effective treatments for HCN-NOS.


Assuntos
Carcinoma Hepatocelular , Hepatoblastoma , Neoplasias Hepáticas , Humanos , Hepatoblastoma/genética , Hepatoblastoma/patologia , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , alfa-Fetoproteínas , Genômica , Proteínas Proto-Oncogênicas , Proteínas de Ciclo Celular
9.
Appl Plant Sci ; 11(5): e11539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915436

RESUMO

Premise: Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a chemical imaging method that can visualize spatial distributions of particular molecules. Plant tissue imaging has so far mostly used cryosectioning, which can be impractical for the preparation of large-area imaging samples, such as full flower petals. Imaging unsectioned plant tissue presents its own difficulties in extracting metabolites to the surface due to the waxy cuticle. Methods: We address this by using established delipidation techniques combined with a solvent vapor extraction prior to applying the matrix with many low-concentration sprays. Results: Using this procedure, we imaged tissue from three different plant species (two flowers and one carnivorous plant leaf). Material factorization analysis of the resulting data reveals a wide range of plant-specific small molecules with varying degrees of localization to specific portions of the tissue samples, while facilitating detection and removal of signal from background sources. Conclusions: This work demonstrates applicability of MALDI-MSI to press-dried plant samples without freezing or cryosectioning, setting the stage for spatially resolved molecule identification. Increased mass resolution and inclusion of tandem mass spectrometry are necessary next steps to allow more specific and reliable compound identification.


Premisa: Matrix­assisted laser desorption/ionization mass spectrometry imaging (MALDI­MSI) es un método de imagen química que puede visualizar distribuciones espaciales de moléculas particulares. Hasta ahora, las imágenes de tejido vegetal han utilizado principalmente la criosección, lo cual puede ser poco práctico para la preparación de muestras de imágenes con áreas grandes, tales como los pétalos completos de una flor. La obtención de imágenes de tejido vegetal no seccionado presenta sus propias dificultades durante la extracción de metabolitos a la superficie, debido a la cutícula cerosa de la planta. Métodos: Abordamos esto usando técnicas establecidas de deslipidación combinados con una extracción de vapor por solvente antes de aplicar por aspersión la matriz en bajas concentraciones. Resultados: Usando este procedimiento, obtuvimos imágenes de tejido de tres especies de plantas diferentes (dos flores y una hoja de planta carnívora). Análisis de factorización material de los datos obtenidos revelaron una amplia gama de pequeñas moléculas específicas en plantas con diversos grados de localización en porciones específicas de las muestras de tejido, al igual que facilitó la detección y remoción de las señales de fondo. Conclusión: Nuestro trabajo demuestra la aplicabilidad de MALDI­MSI hacía muestras de plantas secadas a presión sin congelación o criosección, creando el marco para la identificación de moléculas resueltas espacialmente. Aumento de la resolución de masas e inclusión de la espectrometría de masas en tándem son pasos necesarios para obtener identificación de compuestos más específica y confiable.

10.
Arch Pathol Lab Med ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610100

RESUMO

CONTEXT.­: Gene editing-based therapies are currently in development in the areas of oncology, inherited disease, and infectious disease. These potentially life-altering therapies are derived from decades of research in both academic and industry settings that developed technologies rooted in principles and products of nature. However, with such technologic developments come many important considerations, including adverse risks, high cost, and ethical questions. OBJECTIVE.­: To educate pathologists about gene editing technologies, inform them of potential indications and risks, outline regulatory and practical issues that could affect hospital-based practice and laboratory testing, and advocate that pathologists need to be present at discussions among industry and regulators pertaining to gene editing-based therapies. DESIGN.­: A Gene Editing Workgroup, facilitated by the College of American Pathologists Personalized Health Care Committee and consisting of pathologists of various backgrounds, was convened to develop an educational paper to serve as a stimulus to increase pathologist involvement and inquiry in gene editing therapeutic and diagnostic implementation. RESULTS.­: Through multiple discussions and literature review, the workgroup identified potential gaps in pathologists' knowledge of gene editing. Additional topics that could impact pathology and laboratory medicine were also identified and summarized in order to facilitate pathologists as stakeholders in gene editing therapy administration and monitoring and potential use in diagnostics. CONCLUSIONS.­: Gene editing therapy is a complex but potentially transformative area of medicine. This article serves as an introduction to pathologists to assist them in future discussions with colleagues and potentially identify and alter pathology practices that relate to gene editing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA