RESUMO
BACKGROUND: Biallelic SUFU variants have originally been linked to Joubert syndrome, comprising cerebellar abnormalities, dysmorphism, and polydactyly. In contrast, heterozygous truncating variants have recently been associated with developmental delay and ocular motor apraxia, but only a limited number of patients have been reported. Here, we aim to delineate further the mild end of the phenotypic spectrum related to SUFU haploinsufficiency. METHODS: Nine individuals (from three unrelated families) harboring truncating SUFU variants were investigated, including two previously reported individuals (from one family). We provide results from a comprehensive assessment comprising neuroimaging, neuropsychology, video-oculography, and genetic testing. RESULTS: We identified three inherited or de novo truncating variants in SUFU (NM_016169.4): c.895C>T p.(Arg299∗), c.71dup p.(Ala25Glyfs∗23), and c.71del p.(Pro24Argfs∗72). The phenotypic expression showed high variability both between and within families. Clinical features include motor developmental delay (seven of nine), axial hypotonia (five of nine), ocular motor apraxia (three of nine), and cerebellar signs (three of nine). Four of the six reported children had macrocephaly. Neuropsychological and developmental assessments revealed mildly delayed language development in the youngest children, whereas general cognition was normal in all variant carriers. Subtle but characteristic SUFU-related neuroimaging abnormalities (including superior cerebellar dysplasia, abnormalities of the superior cerebellar peduncles, rostrally displaced fastigium, and vermis hypoplasia) were observed in seven of nine individuals. CONCLUSIONS: Our data shed further light on the mild but recognizable features of SUFU haploinsufficiency and underline its marked phenotypic variability, even within families. Notably, neurodevelopmental and behavioral abnormalities are mild compared with Joubert syndrome and seem to be well compensated over time.
Assuntos
Deficiências do Desenvolvimento , Haploinsuficiência , Fenótipo , Humanos , Masculino , Feminino , Criança , Pré-Escolar , Deficiências do Desenvolvimento/diagnóstico por imagem , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/etiologia , Deficiências do Desenvolvimento/fisiopatologia , Adolescente , Cerebelo/diagnóstico por imagem , Cerebelo/anormalidades , Apraxias/diagnóstico por imagem , Apraxias/genética , Apraxias/fisiopatologia , Apraxias/congênito , Doenças Renais Císticas/genética , Doenças Renais Císticas/diagnóstico por imagem , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Neuroimagem , Anormalidades do Olho/genética , Anormalidades do Olho/diagnóstico por imagem , Retina/diagnóstico por imagem , Retina/anormalidades , Síndrome de CoganRESUMO
The leading first-in-class ruthenium-complex BOLD-100 currently undergoes clinical phase-II anticancer evaluation. Recently, BOLD-100 is identified as anti-Warburg compound. The present study shows that also deregulated lipid metabolism parameters characterize acquired BOLD-100-resistant colon and pancreatic carcinoma cells. Acute BOLD-100 treatment reduces lipid droplet contents of BOLD-100-sensitive but not -resistant cells. Despite enhanced glycolysis fueling lipid accumulation, BOLD-100-resistant cells reveal diminished lactate secretion based on monocarboxylate transporter 1 (MCT1) loss mediated by a frame-shift mutation in the MCT1 chaperone basigin. Glycolysis and lipid catabolism converge in the production of protein/histone acetylation substrate acetyl-coenzymeA (CoA). Mass spectrometric and nuclear magnetic resonance analyses uncover spontaneous cell-free BOLD-100-CoA adduct formation suggesting acetyl-CoA depletion as mechanism bridging BOLD-100-induced lipid metabolism alterations and histone acetylation-mediated gene expression deregulation. Indeed, BOLD-100 treatment decreases histone acetylation selectively in sensitive cells. Pharmacological targeting confirms histone de-acetylation as central mode-of-action of BOLD-100 and metabolic programs stabilizing histone acetylation as relevant Achilles' heel of acquired BOLD-100-resistant cell and xenograft models. Accordingly, histone gene expression changes also predict intrinsic BOLD-100 responsiveness. Summarizing, BOLD-100 is identified as epigenetically active substance acting via targeting several onco-metabolic pathways. Identification of the lipid metabolism as driver of acquired BOLD-100 resistance opens novel strategies to tackle therapy failure.
Assuntos
Antineoplásicos , Histonas , Compostos Organometálicos , Humanos , Histonas/metabolismo , Metabolismo dos Lipídeos , Acetilação , Acetilcoenzima A/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , LipídeosRESUMO
DNA methylation classifiers ("episignatures") help to determine the pathogenicity of variants of uncertain significance (VUS). However, their sensitivity is limited due to their training on unambiguous cases with strong-effect variants so that the classification of variants with reduced effect size or in mosaic state may fail. Moreover, episignature evaluation of mosaics as a function of their degree of mosaicism has not been developed so far. We improved episignatures with respect to three categories. Applying (i) minimum-redundancy-maximum-relevance feature selection we reduced their length by up to one order of magnitude without loss of accuracy. Performing (ii) repeated re-training of a support vector machine classifier by step-wise inclusion of cases in the training set that reached probability scores larger than 0.5, we increased the sensitivity of the episignature-classifiers by 30%. In the newly diagnosed patients we confirmed the association between DNA methylation aberration and age at onset of KMT2B-deficient dystonia. Moreover, we found evidence for allelic series, including KMT2B-variants with moderate effects and comparatively mild phenotypes such as late-onset focal dystonia. Retrained classifiers also can detect mosaics that previously remained below the 0.5-threshold, as we showed for KMT2D-associated Kabuki syndrome. Conversely, episignature-classifiers are able to revoke erroneous exome calls of mosaicism, as we demonstrated by (iii) comparing presumed mosaic cases with a distribution of artificial in silico-mosaics that represented all the possible variation in degree of mosaicism, variant read sampling and methylation analysis.
Assuntos
Anormalidades Múltiplas , Metilação de DNA , Humanos , Fenótipo , Anormalidades Múltiplas/genética , Alelos , MosaicismoRESUMO
OBJECTIVE: By loading transfer RNAs with their cognate amino acids, aminoacyl-tRNA synthetases (ARS) are essential for protein translation. Both cytosolic ARS1-deficiencies and mitochondrial ARS2 deficiencies can cause severe diseases. Amino acid supplementation has shown to positively influence the clinical course of four individuals with cytosolic ARS1 deficiencies. We hypothesize that this intervention could also benefit individuals with mitochondrial ARS2 deficiencies. METHODS: This study was designed as a N-of-1 trial. Daily oral L-phenylalanine supplementation was used in a 3-year-old girl with FARS2 deficiency. A period without supplementation was implemented to discriminate the effects of treatment from age-related developments and continuing physiotherapy. Treatment effects were measured through a physiotherapeutic testing battery, including movement assessment battery for children, dynamic gait index, gross motor function measure 66, and quality of life questionnaires. RESULTS: The individual showed clear improvement in all areas tested, especially in gross motor skills, movement abilities, and postural stability. In the period without supplementation, she lost newly acquired motor skills but regained these upon restarting supplementation. No adverse effects and good tolerance of treatment were observed. INTERPRETATION AND CONCLUSION: Our positive results encourage further studies both on L-phenylalanine for other individuals with FARS2 deficiency and the exploration of this treatment rationale for other ARS2 deficiencies. Additionally, treatment costs were relatively low at 1.10 /day.
Assuntos
Fenilalanina-tRNA Ligase , Criança , Feminino , Humanos , Pré-Escolar , Fenilalanina-tRNA Ligase/genética , Fenilalanina-tRNA Ligase/química , Fenilalanina-tRNA Ligase/metabolismo , Fenilalanina/metabolismo , Qualidade de Vida , Mitocôndrias/genética , Mitocôndrias/metabolismo , RNA de Transferência/metabolismo , Proteínas Mitocondriais/genéticaRESUMO
Aberrant expression of dystrophin, utrophin, dysferlin, or calpain-3 was originally identified in muscular dystrophies (MDs). Increasing evidence now indicates that these proteins might act as tumor suppressors in myogenic and non-myogenic cancers. As DNA damage and somatic aneuploidy, hallmarks of cancer, are early pathological signs in MDs, we hypothesized that a common pathway might involve the centrosome. Here, we show that dystrophin, utrophin, dysferlin, and calpain-3 are functional constituents of the centrosome. In myoblasts, lack of any of these proteins caused excess centrosomes, centrosome misorientation, nuclear abnormalities, and impaired microtubule nucleation. In dystrophin double-mutants, these defects were significantly aggravated. Moreover, we demonstrate that also in non-myogenic cells, all four MD-related proteins localize to the centrosome, including the muscle-specific full-length dystrophin isoform. Therefore, MD-related proteins might share a convergent function at the centrosome in addition to their diverse, well-established muscle-specific functions. Thus, our findings support the notion that cancer-like centrosome-related defects underlie MDs and establish a novel concept linking MDs to cancer.
Assuntos
Distrofias Musculares , Neoplasias , Calpaína , Centrossomo/metabolismo , Disferlina , Distrofina/genética , Humanos , Proteínas de Membrana/metabolismo , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Neoplasias/genética , UtrofinaRESUMO
OBJECTIVE: To investigate the effectiveness and safety of the ketogenic diet (KD) in drug-resistant epilepsy in childhood in relation to the new 2017 International League Against Epilepsy (ILAE) classification of etiology. METHODS: A consecutive cohort of patients treated with the KD were categorized according to the ILAE classification into known (structural, genetic, metabolic, infectious, and immune-mediated) and unknown etiology. Primary outcome was the frequency of patients achieving seizure freedom with the KD at 3 months, secondary outcomes were seizure reduction >50% at 3 months, and both seizure freedom and seizure reduction >50% at 6, 12 months, and at last follow-up (LFU), and adverse effects. Outcomes were compared between etiology groups. RESULTS: Etiology was known in 70% (129/183). Outcomes did not differ at 3 months (known vs unknown: seizure freedom 28% vs 33%, seizure reduction 62 vs 67%), but seizure freedom was significantly less frequent in known etiology at 6 months (26% vs 43%) and beyond (22% vs 37%). Logistic regression identified duration of epilepsy, number of previous antiseizure medications (ASMs), and age-appropriate psychomotor development as positive determinants of outcome. Among individual etiology groups, the effectiveness of KD was relatively best for genetic (33% at LFU) and poorest for metabolic etiology (8% at LFU). The small number of patients with infectious and immune-mediated etiology requires larger numbers in each etiology group to corroborate our results. No differences in type and frequency of adverse effects (in 71%) between etiology groups were observed, requiring medical intervention in 21%. SIGNIFICANCE: The KD was most effective in genetic and unknown etiology, many unknowns probably represent yet unidentified genetic causes. We recommend consequent diagnostic and genetic work-up to identify etiologies that respond best to the KD. The KD should be offered early to infants with genetic epilepsy before deterioration of epileptic symptoms and of psychomotor development.
Assuntos
Dieta Cetogênica , Epilepsia Resistente a Medicamentos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Epilepsia , Estudos de Coortes , Dieta Cetogênica/efeitos adversos , Dieta Cetogênica/métodos , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia/diagnóstico , Humanos , Lactente , Estudos Retrospectivos , Convulsões , Resultado do TratamentoRESUMO
BACKGROUND: Recent research suggested an hippocalcin (HPCA)-related form of DYT2-like autosomal recessive dystonia. Two reports highlight a broad spectrum of the clinical phenotype. Here, we describe a novel HPCA gene variant in a pediatric patient and two affected relatives. METHODS: Whole exome sequencing was applied after a thorough clinical and neurological examination of the index patient and her family members. Results of neuropsychological testing were analyzed. RESULTS: Whole exome sequencing revealed a novel homozygous missense variant in the HPCA gene [c.182C>T p.(Ala61Val)] in our pediatric patient and the two affected family members. Clinically, the cases presented with dystonia, dysarthria, and jerky movements. We observed a particular cognitive profile with executive dysfunctions in our patient, which corresponds to the cognitive deficits that have been observed in the patients previously described. CONCLUSION: We present a novel genetic variant of the HPCA gene associated with autosomal recessive dystonia in a child with childhood-onset dystonia supporting its clinical features. Furthermore, we propose specific HPCA-related cognitive changes in homozygous carriers, underlining the importance of undertaking a systematic assessment of cognition in HPCA-related dystonia.
Assuntos
Distonia , Distúrbios Distônicos , Criança , Cognição , Distonia/genética , Distúrbios Distônicos/genética , Feminino , Hipocalcina/genética , Hipocalcina/metabolismo , Humanos , MutaçãoRESUMO
X-linked lymphoproliferative disease (XLP1) is a combined immunodeficiency characterized by severe immune dysregulation caused by mutations in the SH2D1A/SAP gene. Loss or dysfunction of SH2D1A is associated with the inability in clearing Epstein-Barr-Virus (EBV) infections. Clinical manifestation is diverse and ranges from life-threatening hemophagocytic lymphohistiocytosis (HLH) and fulminant infectious mononucleosis (FIM) to lymphoma and antibody deficiency. Rare manifestations include aplastic anemia, chronic gastritis and vasculitis. Herein, we describe the case of a previously healthy eight-year old boy diagnosed with XLP1 presenting with acute non-EBV acute meningoencephalitis with thrombotic occlusive vasculopathy. The patient developed multiple cerebral aneurysms leading to repeated intracerebral hemorrhage and severe cerebral damage. Immunological examination was initiated after development of a susceptibility to infections with recurrent bronchitis and one episode of severe pneumonia and showed antibody deficiency with pronounced IgG1-3-4 subclass deficiency. We could identify a novel hemizygous SH2D1A point mutation affecting the start codon. Basal levels of SAP protein seemed to be detectable in CD8+ and CD4+ T- and CD56+ NK-cells of the patient what indicated an incomplete absence of SAP. In conclusion, we could demonstrate a novel SH2D1A mutation leading to deficient SAP protein expression and a rare clinical phenotype of non-EBV associated acute meningoencephalitis with thrombotic occlusive vasculopathy.
Assuntos
Infecções por Vírus Epstein-Barr/imunologia , Transtornos Linfoproliferativos/imunologia , Meningoencefalite/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/imunologia , Trombose/imunologia , Criança , Infecções por Vírus Epstein-Barr/diagnóstico , Humanos , Transtornos Linfoproliferativos/diagnóstico , Masculino , Meningoencefalite/diagnóstico , Mutação , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária/genética , Trombose/diagnósticoRESUMO
PURPOSE: Human malignant pleural mesothelioma (MPM) is characterized by dismal prognosis. Consequently, dissection of molecular mechanisms driving malignancy is of key importance. Here we investigate whether activating mutations in the telomerase reverse transcriptase (TERT) gene promoter are present in MPM and associated with disease progression, cell immortalization, and genomic alteration patterns. EXPERIMENTAL DESIGN: TERT promoters were sequenced in 182 MPM samples and compared with clinicopathologic characteristics. Surgical specimens from 45 patients with MPM were tested for in vitro immortalization. The respective MPM cell models (N = 22) were analyzed by array comparative genomic hybridization, gene expression profiling, exome sequencing as well as TRAP, telomere length, and luciferase promoter assays. RESULTS: TERT promoter mutations were detected in 19 of 182 (10.4%) MPM cases and significantly associated with advanced disease and nonepithelioid histology. Mutations independently predicted shorter overall survival in both histologic MPM subtypes. Moreover, 9 of 9 (100%) mutated but only 13 of 36 (36.1%) wild-type samples formed immortalized cell lines. TERT promoter mutations were associated with enforced promoter activity and TERT mRNA expression, while neither telomerase activity nor telomere lengths were significantly altered. TERT promoter-mutated MPM cases exhibited distinctly reduced chromosomal alterations and specific mutation patterns. While BAP1 mutations/deletions were exclusive with TERT promoter mutations, homozygous deletions at the RBFOX1 and the GSTT1 loci were clearly enriched in mutated cases. CONCLUSIONS: TERT promoter mutations independently predict a dismal course of disease in human MPM. The altered genomic aberration pattern indicates that TERT promoter mutations identify a novel, highly aggressive MPM subtype presumably based on a specific malignant transformation process.
Assuntos
Biomarcadores Tumorais/genética , Mesotelioma Maligno/genética , Neoplasias Pleurais/genética , Telomerase/genética , Idoso , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Transformação Celular Neoplásica/genética , Hibridização Genômica Comparativa , Análise Mutacional de DNA , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Mesotelioma Maligno/mortalidade , Mesotelioma Maligno/patologia , Pessoa de Meia-Idade , Mutação , Pleura/patologia , Neoplasias Pleurais/mortalidade , Neoplasias Pleurais/patologia , Prognóstico , Regiões Promotoras Genéticas/genética , Estudos Retrospectivos , Sequenciamento do ExomaRESUMO
The GABRA1 gene encodes one of the most conserved and highly expressed subunits of the GABAA receptor family. Variants in this gene are causatively implicated in different forms of epilepsy and also more severe epilepsy-related neurodevelopmental syndromes. Here we study functional consequences of a novel de novo missense GABRA1 variant, p.(Ala332Val), identified through exome sequencing in an individual affected by early-onset syndromic epileptic encephalopathy. The variant is localised within the transmembrane domain helix 3 (TM3) and in silico prediction algorithms suggested this variant to be likely pathogenic. In vitro assessment revealed unchanged protein levels, regular assembly and forward trafficking to the cell surface. On the functional level a significant left shift of the apparent GABA potency in two-electrode voltage clamp electrophysiology experiments was observed, as well as changes in the extent of desensitization. Additionally, apparent diazepam potency was left shifted in radioligand displacement assays. During prenatal development mainly alpha2/3 subunits are expressed, whereas after birth a switch to alpha1 occurs. The expression of alpha1 in humans is upregulated during the first years. Thus, the molecular change of function reported here supports pathogenicity and could explain early-onset of seizures in the affected individual.
Assuntos
Deficiências do Desenvolvimento/genética , Epilepsia/genética , Mutação , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/metabolismo , Criança , Deficiências do Desenvolvimento/patologia , Diazepam/farmacologia , Epilepsia/patologia , Moduladores GABAérgicos/farmacologia , Células HEK293 , Humanos , Masculino , Potenciais da Membrana , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Receptores de GABA-A/química , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/metabolismoRESUMO
Lipin-1 is a phosphatidic acid phosphohydrolase (EC 3.1.3.4) that catalyzes the dephosphorylation of phosphatidic acid to diacylglycerol and inorganic phosphate. Deficiency of this enzyme causes potentially fatal severe, recurrent episodes of rhabdomyolysis triggered by infection. The defect has only recently been recognized so little is known about the long-term outcome in adult patients with this disorder. We report the course and outcome of a 25-year-old female patient with lipin-1 deficiency after a recent episode of rhabdomyolysis requiring intensive care admission with a peak creatine kinase of 500 000 IU/L. One-year post discharge from intensive care, the patient has residual drop foot bilaterally consistent with bilateral common peroneal neuropathies in addition to a background residual distal myopathy.
RESUMO
PURPOSE: A new syndrome with hypotonia, intellectual disability, and eye abnormalities (HIDEA) was previously described in a large consanguineous family. Linkage analysis identified the recessive disease locus, and genome sequencing yielded three candidate genes with potentially pathogenic biallelic variants: transketolase (TKT), transmembrane prolyl 4-hydroxylase (P4HTM), and ubiquitin specific peptidase 4 (USP4). However, the causative gene remained elusive. METHODS: International collaboration and exome sequencing were used to identify new patients with HIDEA and biallelic, potentially pathogenic, P4HTM variants. Segregation analysis was performed using Sanger sequencing. P4H-TM wild-type and variant constructs without the transmembrane region were overexpressed in insect cells and analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and western blot. RESULTS: Five different homozygous or compound heterozygous pathogenic P4HTM gene variants were identified in six new and six previously published patients presenting with HIDEA. Hypoventilation, obstructive and central sleep apnea, and dysautonomia were identified as novel features associated with the phenotype. Characterization of three of the P4H-TM variants demonstrated yielding insoluble protein products and, thus, loss-of-function. CONCLUSIONS: Biallelic loss-of-function P4HTM variants were shown to cause HIDEA syndrome. Our findings enable diagnosis of the condition, and highlight the importance of assessing the need for noninvasive ventilatory support in patients.
Assuntos
Prolil Hidroxilases/genética , Transcetolase/genética , Proteases Específicas de Ubiquitina/genética , Anormalidades Múltiplas/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Exoma , Anormalidades do Olho/genética , Feminino , Humanos , Hipoventilação/genética , Deficiência Intelectual/genética , Mutação com Perda de Função/genética , Masculino , Hipotonia Muscular/genética , Linhagem , Fenótipo , Disautonomias Primárias/genética , Prolil Hidroxilases/metabolismo , Síndrome , Transcetolase/metabolismo , Sequenciamento do Exoma , Adulto JovemRESUMO
PURPOSE: To examine the involvement of the retinal pigment epithelium (RPE) in the presence of vitelliform macular lesions (VML) in Best vitelliform macular dystrophy (BVMD), autosomal recessive bestrophinopathy, and adult-onset vitelliform macular degeneration using polarization-sensitive optical coherence tomography (PS-OCT). METHODS: A total of 35 eyes of 18 patients were imaged using a PS-OCT system and blue light fundus autofluorescence imaging. Pathogenic mutations in the BEST1 gene, 3 of which were new, were detected in all patients with BVMD and autosomal recessive bestrophinopathy. RESULTS: Polarization-sensitive optical coherence tomography showed a characteristic pattern in all three diseases with nondepolarizing material in the subretinal space consistent with the yellowish VML seen on funduscopy with a visible RPE line below it. A focal RPE thickening was seen in 26 eyes under or at the edge of the VML. Retinal pigment epithelium thickness outside the VML was normal or mildly thinned in patients with BVMD and adult-onset vitelliform macular degeneration but was diffusely thinned or atrophic in patients with autosomal recessive bestrophinopathy. Patients with autosomal recessive bestrophinopathy showed sub-RPE fibrosis alongside the subretinal VML. Polarization-sensitive optical coherence tomography was more reliable in assessing the localization and the integrity of the RPE than spectral domain OCT alone. On spectral domain OCT, identification of the RPE was not possible in 19.4% of eyes. Polarization-sensitive optical coherence tomography allowed for definite identification of the location of VML in respect to the RPE in all eyes, since it provides a tissue-specific contrast. CONCLUSION: Polarization-sensitive optical coherence tomography confirms in vivo the subretinal location of VML and is useful in the assessment of RPE integrity.
Assuntos
Distrofia Macular Viteliforme/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos Transversais , Feminino , Angiofluoresceinografia/métodos , Humanos , Macula Lutea/patologia , Masculino , Pessoa de Meia-Idade , Epitélio Pigmentado da Retina/patologia , Tomografia de Coerência Óptica/métodos , Adulto JovemRESUMO
OBJECTIVE: To expand the clinical and genetic spectrum of nemaline myopathy 10 by a series of Austrian and German patients with a milder disease course and missense mutations in LMOD3. METHODS: We characterized the clinical features and the genetic status of 4 unrelated adolescent or adult patients with nemaline myopathy. RESULTS: The 4 patients showed a relatively mild disease course. They all have survived into adulthood, 3 of 4 have remained ambulatory, and all showed marked facial weakness. Muscle biopsy specimens gave evidence of nemaline bodies. All patients were unrelated but originated from Austria (Tyrol and Upper Austria) and Southern Germany (Bavaria). All patients carried the missense variant c.1648C>T, p.(Leu550Phe) in the LMOD3 gene, either on both alleles or in trans with another missense variant (c.1004A>G, p.Gln335Arg). Both variants were not reported previously. CONCLUSIONS: In 2014, a severe form of congenital nemaline myopathy caused by disrupting mutations in LMOD3 was identified and denoted as NEM10. Unlike the previously reported patients, who had a severe clinical picture with a substantial risk of early death, our patients showed a relatively mild disease course. As the missense variant c.1648C>T is located further downstream compared to all previously published LMOD3 mutations, it might be associated with higher protein expression compared to the reported loss-of-function mutations. The apparent clusters of 2 mild mutations in Germany and Austria in 4 unrelated families may be explained by a founder effect.
Assuntos
Proteínas Musculares/genética , Miopatias da Nemalina/genética , Adolescente , Adulto , Áustria , Feminino , Alemanha , Humanos , Masculino , Proteínas dos Microfilamentos , Mutação de Sentido Incorreto , FenótipoRESUMO
Neuroblastoma is the most common extracranial solid tumor in childhood. The vast majority of metastatic (M) stage patients present with disseminated tumor cells (DTCs) in the bone marrow (BM) at diagnosis and relapse. Although these cells represent a major obstacle in the treatment of neuroblastoma patients, insights into their expression profile remained elusive. The present RNA-Seq study of stage 4/M primary tumors, enriched BM-derived diagnostic and relapse DTCs, as well as the corresponding BM-derived mononuclear cells (MNCs) from 53 patients revealed 322 differentially expressed genes in DTCs as compared to the tumors (q < 0.001, |log2 FC|>2). Particularly, the levels of transcripts encoded by mitochondrial DNA were elevated in DTCs, whereas, for example, genes involved in angiogenesis were downregulated. Furthermore, 224 genes were highly expressed in DTCs and only slightly, if at all, in MNCs (q < 8 × 10-75 log2 FC > 6). Interestingly, we found the transcriptome of relapse DTCs largely resembling those of diagnostic DTCs with only 113 differentially expressed genes under relaxed cut-offs (q < 0.01, |log2 FC|>0.5). Notably, relapse DTCs showed a positional enrichment of 31 downregulated genes on chromosome 19, including five tumor suppressor genes: SIRT6, BBC3/PUMA, STK11, CADM4 and GLTSCR2. This first RNA-Seq analysis of neuroblastoma DTCs revealed their unique expression profile in comparison to the tumors and MNCs, and less pronounced differences between diagnostic and relapse DTCs. The latter preferentially affected downregulation of genes encoded by chromosome 19. As these alterations might be associated with treatment failure and disease relapse, further functional studies on DTCs should be considered.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Medula Óssea/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Células Neoplásicas Circulantes/metabolismo , Neuroblastoma/genética , Transcriptoma , Biomarcadores Tumorais/sangue , Neoplasias da Medula Óssea/sangue , Neoplasias da Medula Óssea/secundário , Progressão da Doença , Humanos , Células Neoplásicas Circulantes/patologia , Neuroblastoma/sangue , Neuroblastoma/patologia , PrognósticoRESUMO
BACKGROUND: Loss-of-function CECR1 mutations cause polyarteritis nodosa (PAN) with childhood onset, an autoinflammatory disorder without significant signs of autoimmunity. Herein we describe the unusual presentation of an autoimmune phenotype with constitutive type I interferon activation in siblings with adenosine deaminase 2 (ADA2) deficiency. CASE PRESENTATION: We describe two siblings with early-onset recurrent strokes, arthritis, oral ulcers, discoid rash, peripheral vascular occlusive disease and high antinuclear antibody titers. Assessment of interferon signatures in blood revealed constitutive type I interferon activation. Aicardi-Goutières syndrome (AGS) was suspected, but no mutation in the known AGS genes were detected. Whole exome sequencing identified compound heterozygosity for a known and a novel mutation in the CECR1 gene. Functional consequences of the mutations were demonstrated by marked reduction in ADA2 catalytic activity. CONCLUSIONS: Our findings demonstrate that ADA2 deficiency can cause an unusual autoimmune phenotype extending the phenotypic spectrum of PAN. Constitutive interferon I activation in patient blood suggests a possible role of type I interferon in disease pathogenesis which may have therapeutic implications.
Assuntos
Adenosina Desaminase/deficiência , Agamaglobulinemia/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Interferon Tipo I/metabolismo , Poliarterite Nodosa/genética , Imunodeficiência Combinada Severa/genética , Adenosina Desaminase/genética , Agamaglobulinemia/complicações , Agamaglobulinemia/diagnóstico , Criança , Pré-Escolar , Humanos , Lactente , Interferon Tipo I/genética , Masculino , Mutação , Linhagem , Fenótipo , Poliarterite Nodosa/complicações , Imunodeficiência Combinada Severa/complicações , Imunodeficiência Combinada Severa/diagnósticoRESUMO
The exceptionally large SYNE1 (spectrin repeat-containing nuclear envelope protein 1) gene encodes different nesprin-1 isoforms, which are differentially expressed in striated muscle and in cerebellar and cerebral neurons. Nesprin-1 isoforms can function in cytoskeletal, nuclear, and vesicle anchoring. SYNE1 variants have been associated with a spectrum of neurological and neuromuscular disease. Homozygosity mapping combined with exome sequencing identified a disease-causing nonsense mutation in the ultimate exon of full-length SYNE1 transcript in an 8-year-old boy with distal arthrogryposis and muscular hypotonia. mRNA analysis showed that the mutant transcript is expressed at wild-type levels. The variant truncates nesprin-1 isoforms for the C-terminal KASH (Klarsicht-ANC-Syne homology) domain. This is the third family with recessive arthrogryposis caused by homozygous distal-truncating SYNE1 variants. There is a SYNE1 genotype-phenotype correlation emerging, with more proximal homozygous SYNE1 variants causing recessive cerebellar ataxia of variable onset (SCAR8; ARCA-1).
Assuntos
Artrogripose/genética , Códon sem Sentido , Genótipo , Debilidade Muscular/genética , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Fenótipo , Artrogripose/diagnóstico , Criança , Proteínas do Citoesqueleto , Homozigoto , Humanos , Masculino , Debilidade Muscular/diagnóstico , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Linhagem , SíndromeRESUMO
Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological- or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca2+-calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour-stroma interaction.