Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(43): 26458-26465, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36305893

RESUMO

X-Ray as well as electron diffraction are powerful tools for structure determination of molecules. Studies on randomly oriented molecules in the gas phase address cases in which molecular crystals cannot be generated or the interaction-free molecular structure is to be addressed. Such studies usually yield partial geometrical information, such as interatomic distances. Here, we present a complementary approach, which allows obtaining insight into the structure, handedness, and even detailed geometrical features of molecules in the gas phase. Our approach combines Coulomb explosion imaging, the information that is encoded in the molecular-frame diffraction pattern of core-shell photoelectrons and ab initio computations. Using a loop-like analysis scheme, we are able to deduce specific molecular coordinates with sensitivity even to the handedness of chiral molecules and the positions of individual atoms, e.g., protons.


Assuntos
Elétrons , Estrutura Molecular , Estereoisomerismo , Raios X
2.
J Vis Exp ; (126)2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28872134

RESUMO

This article shows how the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) or the "reaction microscope" technique can be used to distinguish between enantiomers (stereoisomers) of simple chiral species on the level of individual molecules. In this approach, a gaseous molecular jet of the sample expands into a vacuum chamber and intersects with femtosecond (fs) laser pulses. The high intensity of the pulses leads to fast multiple ionization, igniting a so-called Coulomb Explosion that produces several cationic (positively charged) fragments. An electrostatic field guides these cations onto time- and position-sensitive detectors. Similar to a time-of-flight mass spectrometer, the arrival time of each ion yields information on its mass. As a surplus, the electrostatic field is adjusted in a way that the emission direction and the kinetic energy after fragmentation lead to variations in the time-of-flight and in the impact position on the detector. Each ion impact creates an electronic signal in the detector; this signal is treated by high-frequency electronics and recorded event by event by a computer. The registered data correspond to the impact times and positions. With these data, the energy and the emission direction of each fragment can be calculated. These values are related to structural properties of the molecule under investigation, i.e. to the bond lengths and relative positions of the atoms, allowing to determine molecule by molecule the handedness of simple chiral species and other isomeric features.


Assuntos
Hidrocarbonetos Halogenados/química , Espectrometria de Massas/métodos , Espectrometria de Massas/instrumentação , Estereoisomerismo
3.
J Phys Chem Lett ; 8(13): 2780-2786, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28582620

RESUMO

Most large molecules are chiral in their structure: they exist as two enantiomers, which are mirror images of each other. Whereas the rovibronic sublevels of two enantiomers are almost identical (neglecting a minuscular effect of the weak interaction), it turns out that the photoelectric effect is sensitive to the absolute configuration of the ionized enantiomer. Indeed, photoionization of randomly oriented enantiomers by left or right circularly polarized light results in a slightly different electron flux parallel or antiparallel with respect to the photon propagation direction-an effect termed photoelectron circular dichroism (PECD). Our comprehensive study demonstrates that the origin of PECD can be found in the molecular frame electron emission pattern connecting PECD to other fundamental photophysical effects such as the circular dichroism in angular distributions (CDAD). Accordingly, distinct spatial orientations of a chiral molecule enhance the PECD by a factor of about 10.

4.
Chemphyschem ; 17(16): 2465-72, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27298209

RESUMO

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

5.
Science ; 341(6150): 1096-100, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24009390

RESUMO

Bijvoet's method, which makes use of anomalous x-ray diffraction or dispersion, is the standard means of directly determining the absolute (stereochemical) configuration of molecules, but it requires crystalline samples and often proves challenging in structures exclusively comprising light atoms. Herein, we demonstrate a mass spectrometry approach that directly images the absolute configuration of individual molecules in the gas phase by cold target recoil ion momentum spectroscopy after laser ionization-induced Coulomb explosion. This technique is applied to the prototypical chiral molecule bromochlorofluoromethane and the isotopically chiral methane derivative bromodichloromethane.

6.
Opt Express ; 21(6): 6826-36, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23546064

RESUMO

We compare different tilted-pulse-front pumping schemes for single-cycle THz generation in LiNbO(3) crystals both theoretically and experimentally in terms of conversion efficiency. The conventional setup with a single lens as an imaging element has been found to be highly inefficient in the case of sub-50 fs pump pulses, mainly due to the resulting chromatic aberrations. These aberrations are avoided in the proposed new setup, which employs two concave mirrors in a Keplerian telescope arrangement as the imaging sequence. This partially compensates spherical aberrations and results in a ca. six times higher conversion efficiency in the case of 35-fs optical pump pulse duration compared to the single-lens setup. A THz field strength of 60 kV/cm was obtained using 0.5 mJ pump pulses. The divergence of the THz beam has been found experimentally to depend on the pump imaging scheme employed.


Assuntos
Lasers de Estado Sólido , Nióbio/química , Óxidos/química , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Radiação Terahertz
7.
Rev Sci Instrum ; 83(10): 103905, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126780

RESUMO

We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.


Assuntos
Elétrons , Análise Espectral/instrumentação , Condutividade Elétrica , Imagem Óptica
8.
Proc Natl Acad Sci U S A ; 108(29): 11821-4, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730184

RESUMO

Radiation damage to living tissue stems not only from primary ionizing particles but to a substantial fraction from the dissociative attachment of secondary electrons with energies below the ionization threshold. We show that the emission yield of those low energy electrons increases dramatically in ion-atom collisions depending on whether or not the target atoms are isolated or embedded in an environment. Only when the atom that has been ionized and excited by the primary particle impact is in immediate proximity of another atom is a fragmentation route known as interatomic Coulombic decay (ICD) enabled. This leads to the emission of a low energy electron. Over the past decade ICD was explored in several experiments following photoionization. Most recent results show its observation even in water clusters. Here we show the quantitative role of ICD for the production of low energy electrons by ion impact, thus approaching a scenario closer to that of radiation damage by alpha particles: We choose ion energies on the maximum of the Bragg peak where energy is most efficiently deposited in tissue. We compare the electron production after colliding He(+) ions on isolated Ne atoms and on Ne dimers (Ne(2)). In the latter case the Ne atom impacted is surrounded by a most simple environment already opening ICD as a deexcitation channel. As a consequence, we find a dramatically enhanced low energy electron yield. The results suggest that ICD may have a significant influence on cell survival after exposure to ionizing radiation.


Assuntos
Partículas alfa , Sobrevivência Celular/efeitos da radiação , Elétrons , Hélio/química , Neônio/química , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA