Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Physiol ; 9: 331, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29725303

RESUMO

Drug targeting promises to substantially enhance future therapies, for example through the focussing of chemotherapeutic drugs at the site of a tumor, thus reducing the exposure of healthy tissue to unwanted damage. Promising work on the steering of medication in the human body employs magnetic fields acting on nanoparticles made of paramagnetic materials. We develop a computational tool to aid in the optimization of the physical parameters of these particles and the magnetic configuration, estimating the fraction of particles reaching a given target site in a large patient-specific vascular system for different physiological states (heart rate, cardiac output, etc.). We demonstrate the excellent computational performance of our model by its application to the simulation of paramagnetic-nanoparticle-laden flows in a circle of Willis geometry obtained from an MRI scan. The results suggest a strong dependence of the particle density at the target site on the strength of the magnetic forcing and the velocity of the background fluid flow.

2.
J R Soc Interface ; 11(99)2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25079871

RESUMO

There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In this paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress (WSS) gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and WSS between P5 and P6: (i) the measured reduction in typical vessel diameter between both time points and (ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain.


Assuntos
Hemodinâmica/fisiologia , Modelos Biológicos , Neovascularização Fisiológica/fisiologia , Retina/anatomia & histologia , Animais , Fenômenos Biomecânicos , Simulação por Computador , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia Confocal , Retina/fisiologia
3.
J Chem Phys ; 140(3): 034707, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25669407

RESUMO

By means of lattice-Boltzmann simulations the drag force on a sphere of radius R approaching a superhydrophobic striped wall has been investigated as a function of arbitrary separation h. Superhydrophobic (perfect-slip vs. no-slip) stripes are characterized by a texture period L and a fraction of the gas area ϕ. For very large values of h/R, we recover the macroscopic formulae for a sphere moving towards a hydrophilic no-slip plane. For h/R = O(1), the drag force is smaller than predicted by classical theories for hydrophilic no-slip surfaces, but larger than expected for a sphere interacting with a uniform perfectly slipping wall. At a thinner gap, h ≪ R the force reduction compared to a classical result becomes more pronounced, and is maximized by increasing ϕ. In the limit of very small separations, our simulation data are in quantitative agreement with an asymptotic equation, which relates a correction to a force for superhydrophobic slip to texture parameters. In addition, we examine the flow and pressure field and observe their oscillatory character in the transverse direction in the vicinity of the wall, which reflects the influence of the heterogeneity and anisotropy of the striped texture. Finally, we investigate the lateral force on the sphere, which is detectable in case of very small separations and is maximized by stripes with ϕ = 0.5.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23496608

RESUMO

Anisotropic superhydrophobic surfaces have the potential to greatly reduce drag and enhance mixing phenomena in microfluidic devices. Recent work has focused mostly on cases of superhydrophobic stripes. Here, we analyze a relevant situation of cosine variation of the local slip length. We derive approximate formulas for maximal (longitudinal) and minimal (transverse) directional effective slip lengths that are in good agreement with the exact numerical solution and lattice-Boltzmann simulations. Compared to the case of superhydrophobic stripes, the cosine texture can provide a very large effective slip. However, the difference between eigenvalues of the slip-length tensor is smaller, indicating that the flow is less anisotropic.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Microfluídica/métodos , Modelos Teóricos , Soluções/química , Simulação por Computador , Propriedades de Superfície
5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016324, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22400674

RESUMO

We describe a generalization of the tensorial slip boundary condition, originally justified for a thick (compared to texture period) channel, to any channel thickness. The eigenvalues of the effective slip-length tensor, however, in general case become dependent on the gap and cannot be viewed as a local property of the surface, being a global characteristic of the channel. To illustrate the use of the tensor formalism we develop a semianalytical theory of an effective slip in a parallel-plate channel with one superhydrophobic striped and one hydrophilic surface. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. We then present results of lattice Boltzmann simulations to validate the analysis. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA