Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Hum Brain Mapp ; 45(1): e26553, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38224541

RESUMO

22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Feminino , Humanos , Adolescente , Masculino , Síndrome de DiGeorge/diagnóstico por imagem , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Transtornos Psicóticos/complicações , Substância Cinzenta/diagnóstico por imagem
2.
Radiology ; 309(1): e230096, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37906015

RESUMO

Background Clinically acquired brain MRI scans represent a valuable but underused resource for investigating neurodevelopment due to their technical heterogeneity and lack of appropriate controls. These barriers have curtailed retrospective studies of clinical brain MRI scans compared with more costly prospectively acquired research-quality brain MRI scans. Purpose To provide a benchmark for neuroanatomic variability in clinically acquired brain MRI scans with limited imaging pathology (SLIPs) and to evaluate if growth charts from curated clinical MRI scans differed from research-quality MRI scans or were influenced by clinical indication for the scan. Materials and Methods In this secondary analysis of preexisting data, clinical brain MRI SLIPs from an urban pediatric health care system (individuals aged ≤22 years) were scanned across nine 3.0-T MRI scanners. The curation process included manual review of signed radiology reports and automated and manual quality review of images without gross pathology. Global and regional volumetric imaging phenotypes were measured using two image segmentation pipelines, and clinical brain growth charts were quantitatively compared with charts derived from a large set of research controls in the same age range by means of Pearson correlation and age at peak volume. Results The curated clinical data set included 532 patients (277 male; median age, 10 years [IQR, 5-14 years]; age range, 28 days after birth to 22 years) scanned between 2005 and 2020. Clinical brain growth charts were highly correlated with growth charts derived from research data sets (22 studies, 8346 individuals [4947 male]; age range, 152 days after birth to 22 years) in terms of normative developmental trajectories predicted by the models (median r = 0.979). Conclusion The clinical indication of the scans did not significantly bias the output of clinical brain charts. Brain growth charts derived from clinical controls with limited imaging pathology were highly correlated with brain charts from research controls, suggesting the potential of curated clinical MRI scans to supplement research data sets. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Ertl-Wagner and Pai in this issue.


Assuntos
Encéfalo , Gráficos de Crescimento , Humanos , Masculino , Criança , Recém-Nascido , Estudos Retrospectivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Cabeça
4.
Behav Genet ; 53(1): 1-24, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357558

RESUMO

Twin studies yield valuable insights into the sources of variation, covariation and causation in human traits. The ABCD Study® (abcdstudy.org) was designed to take advantage of four universities known for their twin research, neuroimaging, population-based sampling, and expertise in genetic epidemiology so that representative twin studies could be performed. In this paper we use the twin data to: (i) provide initial estimates of heritability for the wide range of phenotypes assessed in the ABCD Study using a consistent direct variance estimation approach, assuring that both data and methodology are sound; and (ii) provide an online resource for researchers that can serve as a reference point for future behavior genetic studies of this publicly available dataset. Data were analyzed from 772 pairs of twins aged 9-10 years at study inception, with zygosity determined using genotypic data, recruited and assessed at four twin hub sites. The online tool provides twin correlations and both standardized and unstandardized estimates of additive genetic, and environmental variation for 14,500 continuously distributed phenotypic features, including: structural and functional neuroimaging, neurocognition, personality, psychopathology, substance use propensity, physical, and environmental trait variables. The estimates were obtained using an unconstrained variance approach, so they can be incorporated directly into meta-analyses without upwardly biasing aggregate estimates. The results indicated broad consistency with prior literature where available and provided novel estimates for phenotypes without prior twin studies or those assessed at different ages. Effects of site, self-identified race/ethnicity, age and sex were statistically controlled. Results from genetic modeling of all 53,172 continuous variables, including 38,672 functional MRI variables, will be accessible via the user-friendly open-access web interface we have established, and will be updated as new data are released from the ABCD Study. This paper provides an overview of the initial results from the twin study embedded within the ABCD Study, an introduction to the primary research domains in the ABCD study and twin methodology, and an evaluation of the initial findings with a focus on data quality and suitability for future behavior genetic studies using the ABCD dataset. The broad introductory material is provided in recognition of the multidisciplinary appeal of the ABCD Study. While this paper focuses on univariate analyses, we emphasize the opportunities for multivariate, developmental and causal analyses, as well as those evaluating heterogeneity by key moderators such as sex, demographic factors and genetic background.


Assuntos
Doenças em Gêmeos , Gêmeos , Humanos , Gêmeos/genética , Fenótipo , Doenças em Gêmeos/genética , Neuroimagem , Imageamento por Ressonância Magnética , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-34848384

RESUMO

BACKGROUND: The presence of a 22q11.2 microdeletion (22q11.2 deletion syndrome [22q11DS]) ranks among the greatest known genetic risk factors for the development of psychotic disorders. There is emerging evidence that the cerebellum is important in the pathophysiology of psychosis. However, there is currently limited information on cerebellar neuroanatomy in 22q11DS specifically. METHODS: High-resolution 3T magnetic resonance imaging was acquired in 79 individuals with 22q11DS and 70 typically developing control subjects (N = 149). Lobar and lobule-level cerebellar volumes were estimated using validated automated segmentation algorithms, and subsequently group differences were compared. Hierarchical clustering, principal component analysis, and graph theoretical models were used to explore intercerebellar relationships. Cerebrocerebellar structural connectivity with cortical thickness was examined via linear regression models. RESULTS: Individuals with 22q11DS had, on average, 17.3% smaller total cerebellar volumes relative to typically developing subjects (p < .0001). The lobules of the superior posterior cerebellum (e.g., VII and VIII) were particularly affected in 22q11DS. However, all cerebellar lobules were significantly smaller, even after adjusting for total brain volumes (all cerebellar lobules p < .0002). The superior posterior lobule was disproportionately associated with cortical thickness in the frontal lobes and cingulate cortex, brain regions known be affected in 22q11DS. Exploratory analyses suggested that the superior posterior lobule, particularly Crus I, may be associated with psychotic symptoms in 22q11DS. CONCLUSIONS: The cerebellum is a critical but understudied component of the 22q11DS neuroendophenotype.


Assuntos
Síndrome de DiGeorge , Transtornos Psicóticos , Humanos , Síndrome de DiGeorge/complicações , Mapeamento Encefálico/métodos , Transtornos Psicóticos/complicações , Encéfalo/patologia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia
6.
Front Bioinform ; 2: 865443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304320

RESUMO

Segmentation of mouse brain magnetic resonance images (MRI) based on anatomical and/or functional features is an important step towards morphogenetic brain structure characterization of murine models in neurobiological studies. State-of-the-art image segmentation methods register image volumes to standard presegmented templates or well-characterized highly detailed image atlases. Performance of these methods depends critically on the quality of skull-stripping, which is the digital removal of tissue signal exterior to the brain. This is, however, tedious to do manually and challenging to automate. Registration-based segmentation, in addition, performs poorly on small structures, low resolution images, weak signals, or faint boundaries, intrinsic to in vivo MRI scans. To address these issues, we developed an automated end-to-end pipeline called DeepBrainIPP (deep learning-based brain image processing pipeline) for 1) isolating brain volumes by stripping skull and tissue from T2w MRI images using an improved deep learning-based skull-stripping and data augmentation strategy, which enables segmentation of large brain regions by atlas or template registration, and 2) address segmentation of small brain structures, such as the paraflocculus, a small lobule of the cerebellum, for which DeepBrainIPP performs direct segmentation with a dedicated model, producing results superior to the skull-stripping/atlas-registration paradigm. We demonstrate our approach on data from both in vivo and ex vivo samples, using an in-house dataset of 172 images, expanded to 4,040 samples through data augmentation. Our skull stripping model produced an average Dice score of 0.96 and residual volume of 2.18%. This facilitated automatic registration of the skull-stripped brain to an atlas yielding an average cross-correlation of 0.98. For small brain structures, direct segmentation yielded an average Dice score of 0.89 and 5.32% residual volume error, well below the tolerance threshold for phenotype detection. Full pipeline execution is provided to non-expert users via a Web-based interface, which exposes analysis parameters, and is powered by a service that manages job submission, monitors job status and provides job history. Usability, reliability, and user experience of DeepBrainIPP was measured using the Customer Satisfaction Score (CSAT) and a modified PYTHEIA Scale, with a rating of excellent. DeepBrainIPP code, documentation and network weights are freely available to the research community.

7.
JAMA Psychiatry ; 79(7): 699-709, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35544191

RESUMO

Importance: Psychiatric and cognitive phenotypes have been associated with a range of specific, rare copy number variants (CNVs). Moreover, IQ is strongly associated with CNV risk scores that model the predicted risk of CNVs across the genome. But the utility of CNV risk scores for psychiatric phenotypes has been sparsely examined. Objective: To determine how CNV risk scores, common genetic variation indexed by polygenic scores (PGSs), and environmental factors combine to associate with cognition and psychopathology in a community sample. Design, Setting, and Participants: The Philadelphia Neurodevelopmental Cohort is a community-based study examining genetics, psychopathology, neurocognition, and neuroimaging. Participants were recruited through the Children's Hospital of Philadelphia pediatric network. Participants with stable health and fluency in English underwent genotypic and phenotypic characterization from November 5, 2009, through December 30, 2011. Data were analyzed from January 1 through July 30, 2021. Exposures: The study examined (1) CNV risk scores derived from models of burden, predicted intolerance, and gene dosage sensitivity; (2) PGSs from genomewide association studies related to developmental outcomes; and (3) environmental factors, including trauma exposure and neighborhood socioeconomic status. Main Outcomes and Measures: The study examined (1) neurocognition, with the Penn Computerized Neurocognitive Battery; (2) psychopathology, with structured interviews based on the Schedule for Affective Disorders and Schizophrenia for School-Age Children; and (3) brain volume, with magnetic resonance imaging. Results: Participants included 9498 youths aged 8 to 21 years; 4906 (51.7%) were female, and the mean (SD) age was 14.2 (3.7) years. After quality control, 18 185 total CNVs greater than 50 kilobases (10 517 deletions and 7668 duplications) were identified in 7101 unrelated participants genotyped on Illumina arrays. In these participants, elevated CNV risk scores were associated with lower overall accuracy on cognitive tests (standardized ß = 0.12; 95% CI, 0.10-0.14; P = 7.41 × 10-26); lower accuracy across a range of cognitive subdomains; increased overall psychopathology; increased psychosis-spectrum symptoms; and higher deviation from a normative developmental model of brain volume. Statistical models of developmental outcomes were significantly improved when CNV risk scores were combined with PGSs and environmental factors. Conclusions and Relevance: In this study, elevated CNV risk scores were associated with lower cognitive ability, higher psychopathology including psychosis-spectrum symptoms, and greater deviations from normative magnetic resonance imaging models of brain development. Together, these results represent a step toward synthesizing rare genetic, common genetic, and environmental factors to understand clinically relevant outcomes in youth.


Assuntos
Variações do Número de Cópias de DNA , Transtornos Psicóticos , Adolescente , Encéfalo/diagnóstico por imagem , Criança , Cognição , Variações do Número de Cópias de DNA/genética , Feminino , Humanos , Masculino , Transtornos Psicóticos/genética , Transtornos Psicóticos/psicologia , Fatores de Risco
8.
Cereb Cortex ; 32(2): 367-379, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231837

RESUMO

Genetic influences on cortical thickness (CT) and surface area (SA) are known to vary across the life span. Little is known about the extent to which genetic factors influence CT and SA in infancy and toddlerhood. We performed the first longitudinal assessment of genetic influences on variation in CT and SA in 501 twins who were aged 0-2 years. We observed substantial additive genetic influences on both average CT (0.48 in neonates, 0.37 in 1-year-olds, and 0.44 in 2-year-olds) and total SA (0.59 in neonates, 0.74 in 1-year-olds, and 0.73 in 2-year-olds). In addition, we found strong heritability of the change in average CT (0.49) from neonates to 1-year-olds, but not from 1- to 2-year-olds. Moreover, we found strong genetic correlations for average CT (rG = 0.92) between 1- and 2-year-olds and strong genetic correlations for total SA across all timepoints (rG = 0.96 between neonates and 1-year-olds, rG = 1 between 1- and 2-year-olds). In addition, we found CT and SA are strongly genetic correlated at birth, but weaken over time. Overall, results suggest a dynamic genetic relationship between CT and SA during first 2 years of life and provide novel insights into how genetic influences shape the cortical structure during early brain development.


Assuntos
Córtex Cerebral , Imageamento por Ressonância Magnética , Córtex Cerebral/diagnóstico por imagem , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Longevidade , Gêmeos/genética
9.
AJR Am J Roentgenol ; 218(5): 831-832, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34910536

RESUMO

Although professional societies now support MRI in patients with nonconditional (legacy) cardiac implanted electronic devices (CIEDs), concern remains regarding potential cumulative effects of serial examinations. We evaluated 481 patients with CIEDs who underwent 599 1.5-T MRI examinations (44.6% cardiac examinations), including 68 patients who underwent multiple examinations (maximum, seven examinations). No major events occurred. The minor adverse event rate was 5.7%. Multiple statistical evaluations showed no increase in adverse event rate with increasing number of previous examinations.


Assuntos
Desfibriladores Implantáveis , Marca-Passo Artificial , Eletrônica , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Exame Físico
10.
Cereb Cortex ; 31(1): 702-715, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32959043

RESUMO

The mechanisms underlying cortical folding are incompletely understood. Prior studies have suggested that individual differences in sulcal depth are genetically mediated, with deeper and ontologically older sulci more heritable than others. In this study, we examine FreeSurfer-derived estimates of average convexity and mean curvature as proxy measures of cortical folding patterns using a large (N = 1096) genetically informative young adult subsample of the Human Connectome Project. Both measures were significantly heritable near major sulci and primary fissures, where approximately half of individual differences could be attributed to genetic factors. Genetic influences near higher order gyri and sulci were substantially lower and largely nonsignificant. Spatial permutation analysis found that heritability patterns were significantly anticorrelated to maps of evolutionary and neurodevelopmental expansion. We also found strong phenotypic correlations between average convexity, curvature, and several common surface metrics (cortical thickness, surface area, and cortical myelination). However, quantitative genetic models suggest that correlations between these metrics are largely driven by nongenetic factors. These findings not only further our understanding of the neurobiology of gyrification, but have pragmatic implications for the interpretation of heritability maps based on automated surface-based measurements.


Assuntos
Evolução Biológica , Encéfalo/patologia , Conectoma , Adulto , Encéfalo/fisiologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
11.
Mult Scler Relat Disord ; 45: 102415, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32717683

RESUMO

OBJECTIVE: To determine whether demyelinating lesions attributable to multiple sclerosis (MS) occur more commonly in regions of pre-existing cervical stenosis (CS). DESIGN/METHODS: One hundred comorbid MS/CS patients and 100 MS-only controls were identified via ICD codes and radiology reports from a retrospective chart review of the records of the University of Pennsylvania Hospital System (UPHS) from January 1st, 2009 to December 31st, 2018. For each patient, axial and sagittal T2 sequences of cervical MRI scans were examined. The cervical cord was split into 7 equal segments comprising the disc space and half of each adjacent vertebral body. Each segment was assessed for the presence of MS lesions and grade 2 CS or higher by previously published criteria. Lesions which were concerning for spondylotic-related signal change based on imaging characteristics were excluded (n=6, 3.2%). Clinical data was extracted from the electronic medical record. RESULTS: Average age at the time of MRI was 57.0 +/- 10.5 years and average time with MS diagnosis was 15.3 +/- 9.2 years. The majority of patients had a diagnosis of relapse-remitting MS (81.0%) and the F:M ratio was 3.5. Eighty-five percent of patients were on treatment at the time of MRI, most often glatiramer acetate (35.0%). Spinal segments with at least grade 2 stenosis were significantly associated with the presence of an MS lesion in the same segment (χ2 = 19.0, p < 0.001, OR = 2.6, 95% CI 1.8-3.7). CONCLUSIONS: Our data suggest there is a significant association between segments of spinal cord with at least moderate CS and segments with MS lesions. Further analysis is required to assess if cervical stenosis is a causative or aggravating factor in multiple sclerosis.


Assuntos
Medula Cervical , Esclerose Múltipla , Medula Cervical/diagnóstico por imagem , Constrição Patológica/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Esclerose Múltipla/complicações , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/epidemiologia , Recidiva Local de Neoplasia , Estudos Retrospectivos , Medula Espinal/diagnóstico por imagem
12.
Am J Psychiatry ; 177(7): 589-600, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32046535

RESUMO

OBJECTIVE: 22q11.2 deletion syndrome (22q11DS) is among the strongest known genetic risk factors for schizophrenia. Previous studies have reported variable alterations in subcortical brain structures in 22q11DS. To better characterize subcortical alterations in 22q11DS, including modulating effects of clinical and genetic heterogeneity, the authors studied a large multicenter neuroimaging cohort from the ENIGMA 22q11.2 Deletion Syndrome Working Group. METHODS: Subcortical structures were measured using harmonized protocols for gross volume and subcortical shape morphometry in 533 individuals with 22q11DS and 330 matched healthy control subjects (age range, 6-56 years; 49% female). RESULTS: Compared with the control group, the 22q11DS group showed lower intracranial volume (ICV) and thalamus, putamen, hippocampus, and amygdala volumes and greater lateral ventricle, caudate, and accumbens volumes (Cohen's d values, -0.90 to 0.93). Shape analysis revealed complex differences in the 22q11DS group across all structures. The larger A-D deletion was associated with more extensive shape alterations compared with the smaller A-B deletion. Participants with 22q11DS with psychosis showed lower ICV and hippocampus, amygdala, and thalamus volumes (Cohen's d values, -0.91 to 0.53) compared with participants with 22q11DS without psychosis. Shape analysis revealed lower thickness and surface area across subregions of these structures. Compared with subcortical findings from other neuropsychiatric disorders studied by the ENIGMA consortium, significant convergence was observed between participants with 22q11DS with psychosis and participants with schizophrenia, bipolar disorder, major depressive disorder, and obsessive-compulsive disorder. CONCLUSIONS: In the largest neuroimaging study of 22q11DS to date, the authors found widespread alterations to subcortical brain structures, which were affected by deletion size and psychotic illness. Findings indicate significant overlap between 22q11DS-associated psychosis, idiopathic schizophrenia, and other severe neuropsychiatric illnesses.


Assuntos
Encéfalo/patologia , Síndrome de DiGeorge/patologia , Transtornos Mentais/patologia , Transtornos Psicóticos/patologia , Adolescente , Adulto , Atrofia/patologia , Mapeamento Encefálico , Estudos de Casos e Controles , Criança , Síndrome de DiGeorge/complicações , Feminino , Humanos , Hipertrofia/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Transtornos Psicóticos/complicações , Adulto Jovem
13.
Neuroimage ; 206: 116319, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31678229

RESUMO

The cerebral cortex contains a significant quantity of intracortical myelin, but the genetics of cortical myelination (CM) in humans is not well understood. Relatively novel MRI-derived measures now enable the investigation of cortical myelination in large samples. In this study, we use a genetically-informative neuroimaging sample of 1096 young adult subjects from the Human Connectome Project in order to investigate genetic and environmental variation in CM and its relationships with cerebral surface area (SA) and cortical thickness (CT). We found that genetic factors account for approximately 50% of the observed individual differences in mean cortical myelin, 75% of the variation in total SA, and 85% of the variance in global mean CT. Although significant genetic influences were found throughout the cortex, both CM and SA demonstrated a posterior predominance, with disproportionately strong effects in the parietal and occipital lobes and significantly overlapping heritability maps (p < 0.001). Yet despite showing similar spatial heritability patterns, we found evidence that CM is genetically independent from SA at both global and vertex levels; genetically-mediated relationships between CM and CT were similarly small in magnitude. We also found small but statistically significant genetic associations between NIH Toolbox Total Cognition score and CM in the temporal lobe and insula. SA-cognition and CT-cognition correlations were less widespread compared to CM and both patterns were similar to those reported in prior studies.


Assuntos
Espessura Cortical do Cérebro , Córtex Cerebral/diagnóstico por imagem , Família , Inteligência/genética , Bainha de Mielina/genética , Gêmeos/genética , Adulto , Córtex Cerebral/anatomia & histologia , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Adulto Jovem
14.
Mol Psychiatry ; 25(8): 1822-1834, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-29895892

RESUMO

The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.


Assuntos
Córtex Cerebral/patologia , Deleção Cromossômica , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Adolescente , Adulto , Feminino , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Transtornos Psicóticos/genética , Adulto Jovem
16.
Struct Equ Modeling ; 26(3): 470-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133771

RESUMO

As data collection costs fall and vast quantities of data are collected, data analysis time can become a bottleneck. For massively parallel analyses, cloud computing offers the short-term rental of ample processing power. Recent software innovations have reduced the offort needed to take advantage of cloud computing. To demonstrate, we replicate a voxel-wise examination of the genetic contributions to cortical development by age using evidence from 1,748 MRI scans. Specifically, we employ off-the-shelf Kubernetes software that permits us to re-run our analyses using almost the same computer code as was published in the original article. Large, well funded institutions may continue to maintain their own computing clusters. However, the modest cost of renting and ease of utilizing cloud computing services makes unprecedented compute power available to all researchers, whether or not affliated with a research institution. We expect this to spur innovation in the sophisticated modeling of large datasets.

17.
J Neurosci ; 39(16): 3028-3040, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30833512

RESUMO

The genetics of cortical arealization in youth is not well understood. In this study, we use a genetically informative sample of 677 typically developing children and adolescents (mean age 12.72 years), high-resolution MRI, and quantitative genetic methodology to address several fundamental questions on the genetics of cerebral surface area. We estimate that >85% of the phenotypic variance in total brain surface area in youth is attributable to additive genetic factors. We also observed pronounced regional variability in the genetic influences on surface area, with the most heritable areas seen in primary visual and visual association cortex. A shared global genetic factor strongly influenced large areas of the frontal and temporal cortex, mirroring regions that are the most evolutionarily novel in humans relative to other primates. In contrast to studies on older populations, we observed statistically significant genetic correlations between measures of surface area and cortical thickness (rG = 0.63), suggestive of overlapping genetic influences between these endophenotypes early in life. Finally, we identified strong and highly asymmetric genetically mediated associations between Full-Scale Intelligence Quotient and left perisylvian surface area, particularly receptive language centers. Our findings suggest that spatially complex and temporally dynamic genetic factors are influencing cerebral surface area in our species.SIGNIFICANCE STATEMENT Over evolution, the human cortex has undergone massive expansion. In humans, patterns of neurodevelopmental expansion mirror evolutionary changes. However, there is a sparsity of information on how genetics impacts surface area maturation. Here, we present a systematic analysis of the genetics of cerebral surface area in youth. We confirm prior research that implicates genetics as the dominant force influencing individual differences in global surface area. We also find evidence that evolutionarily novel brain regions share common genetics, that overlapping genetic factors influence both area and thickness in youth, and the presence of strong genetically mediated associations between intelligence and surface area in language centers. These findings further elucidate the complex role that genetics plays in brain development and function.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Lateralidade Funcional/genética , Inteligência/genética , Adolescente , Mapeamento Encefálico , Criança , Feminino , Testes Genéticos , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão/genética , Gêmeos/genética
18.
Cereb Cortex ; 29(11): 4743-4752, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30715232

RESUMO

The neural substrates of intelligence represent a fundamental but largely uncharted topic in human developmental neuroscience. Prior neuroimaging studies have identified modest but highly dynamic associations between intelligence and cortical thickness (CT) in childhood and adolescence. In a separate thread of research, quantitative genetic studies have repeatedly demonstrated that most measures of intelligence are highly heritable, as are many brain regions associated with intelligence. In the current study, we integrate these 2 streams of prior work by examining the genetic contributions to CT-intelligence relationships using a genetically informative longitudinal sample of 813 typically developing youth, imaged with high-resolution MRI and assessed with Wechsler Intelligence Scales (IQ). In addition to replicating the phenotypic association between multimodal association cortex and language centers with IQ, we find that CT-IQ covariance is nearly entirely genetically mediated. Moreover, shared genetic factors drive the rapidly evolving landscape of CT-IQ relationships in the developing brain.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Inteligência/genética , Adolescente , Córtex Cerebral/crescimento & desenvolvimento , Criança , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , Escalas de Wechsler , Adulto Jovem
19.
Acad Radiol ; 26(4): 443-449, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29960795

RESUMO

RATIONALE AND OBJECTIVES: To determine the metabolic effects of developmental venous anomalies (DVAs) and to correlate those effects with conventional magnetic resonance imaging (MRI) findings. MATERIALS AND METHODS: We conducted a retrospective review of MRI and brain 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) examinations in subjects with DVAs. Conventional MRI was used to determine DVA number, location, size, and associated parenchymal findings such as atrophy, hemorrhage, cavernoma, capillary telangiectasia, cortical dysplasia/polymicrogyria, and white matter signal abnormality. Qualitative and quantitative measures of relative metabolism in the drainage territory of the DVA were measured on 18F-FDG-PET. RESULTS: Fifty-four subjects with 57 DVAs were included in the analysis. 38% were associated with qualitative and quantitative metabolic abnormalities on 18F-FDG-PET, with decreased metabolism in the parenchyma surrounding all but one of these DVAs. DVAs draining gray matter were significantly more likely to be hypometabolic than those draining only white matter, suggesting that the metabolic effects of DVAs may be underestimated on 18F-FDG-PET. CONCLUSION: Altered metabolism is seen in the drainage territory of a significant proportion of DVAs, suggesting that these anomalies are vascular lesions with abnormal physiologic features.


Assuntos
Encéfalo , Malformações Vasculares do Sistema Nervoso Central , Fluordesoxiglucose F18/farmacologia , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Malformações Vasculares do Sistema Nervoso Central/complicações , Malformações Vasculares do Sistema Nervoso Central/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Radiofarmacêuticos/farmacologia , Estudos Retrospectivos
20.
Neuroinformatics ; 17(1): 83-102, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29946897

RESUMO

ITK-SNAP is an interactive software tool for manual and semi-automatic segmentation of 3D medical images. This paper summarizes major new features added to ITK-SNAP over the last decade. The main focus of the paper is on new features that support semi-automatic segmentation of multi-modality imaging datasets, such as MRI scans acquired using different contrast mechanisms (e.g., T1, T2, FLAIR). The new functionality uses decision forest classifiers trained interactively by the user to transform multiple input image volumes into a foreground/background probability map; this map is then input as the data term to the active contour evolution algorithm, which yields regularized surface representations of the segmented objects of interest. The new functionality is evaluated in the context of high-grade and low-grade glioma segmentation by three expert neuroradiogists and a non-expert on a reference dataset from the MICCAI 2013 Multi-Modal Brain Tumor Segmentation Challenge (BRATS). The accuracy of semi-automatic segmentation is competitive with the top specialized brain tumor segmentation methods evaluated in the BRATS challenge, with most results obtained in ITK-SNAP being more accurate, relative to the BRATS reference manual segmentation, than the second-best performer in the BRATS challenge; and all results being more accurate than the fourth-best performer. Segmentation time is reduced over manual segmentation by 2.5 and 5 times, depending on the rater. Additional experiments in interactive placenta segmentation in 3D fetal ultrasound illustrate the generalizability of the new functionality to a different problem domain.


Assuntos
Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Neuroimagem/métodos , Software , Algoritmos , Humanos , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA