Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 18(2): 699-713, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-32584047

RESUMO

The vitreous humor is the first barrier encountered by intravitreally injected nanoparticles. Lipid-based nanoparticles in the vitreous are studied by evaluating their diffusion with single-particle tracking technology and by characterizing their protein coronae with surface plasmon resonance and high-resolution proteomics. Single-particle tracking results indicate that the vitreal mobility of the formulations is dependent on their charge. Anionic and neutral formulations are mobile, whereas larger (>200 nm) neutral particles have restricted diffusion, and cationic particles are immobilized in the vitreous. PEGylation increases the mobility of cationic and larger neutral formulations but does not affect anionic and smaller neutral particles. Convection has a significant role in the pharmacokinetics of nanoparticles, whereas diffusion drives the transport of antibodies. Surface plasmon resonance studies determine that the vitreal corona of anionic formulations is sparse. Proteomics data reveals 76 differentially abundant proteins, whose enrichment is specific to either the hard or the soft corona. PEGylation does not affect protein enrichment. This suggests that protein-specific rather than formulation-specific factors are drivers of protein adsorption on nanoparticles in the vitreous. In summary, our findings contribute to understanding the pharmacokinetics of nanoparticles in the vitreous and help advance the development of nanoparticle-based treatments for eye diseases.


Assuntos
Nanopartículas/química , Soluções Oftálmicas/administração & dosagem , Doenças Retinianas/tratamento farmacológico , Corpo Vítreo/metabolismo , Adsorção , Animais , Difusão , Composição de Medicamentos/métodos , Humanos , Injeções Intravítreas , Lipossomos , Soluções Oftálmicas/farmacocinética , Tamanho da Partícula , Polietilenoglicóis/química , Coroa de Proteína/análise , Coroa de Proteína/metabolismo , Proteômica , Propriedades de Superfície , Sus scrofa
2.
J Colloid Interface Sci ; 582(Pt B): 773-781, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916575

RESUMO

Administration of parenteral liquid crystalline phases, forming in-vivo with tunable nanostructural features and sustained release properties, offers an attractive approach for treatment of infections and local drug delivery. It has also a potential use for postoperative pain management after arthroscopic knee surgery. However, the optimal use of this drug delivery principle requires an improved understanding of the involved dynamic structural transitions after administration of low-viscous stimulus-responsive lipid precursors and their fate after direct contact with the biological environment. These precursors (preformulations) are typically based on a single biologically relevant lipid (or a lipid combination) with non-lamellar liquid crystalline phase forming propensity. In relation to liquid crystalline depot design for intra-articular drug delivery, it was our interest in the present study to shed light on such dynamic structural transitions by combining synchrotron SAXS with a remote controlled addition of synovial fluid (or buffer containing 2% (w/v) albumin). This combination allowed for monitoring in real-time the hydration-triggered dynamic structural events on exposure of the lipid precursor (organic stock solution consisting of the binary lipid mixture of monoolein and castor oil) to excess synovial fluid (or excess buffer). The synchrotron SAXS findings indicate a fast generation of inverse bicontinuous cubic phases within few seconds. The effects of (i) the organic solvent N-methyl-2-pyrolidone (NMP), (ii) the lipid composition, and (iii) the albumin content on modulating the structures of the self-assembled lipid aggregates and the implications of the experimental findings in the design of liquid crystalline depots for intra-articular drug delivery are discussed.


Assuntos
Cristais Líquidos , Preparações Farmacêuticas , Lipídeos , Espalhamento a Baixo Ângulo , Líquido Sinovial , Difração de Raios X
3.
Mol Pharm ; 16(10): 4399-4404, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31430156

RESUMO

Preclinical in vivo tests of retinal drug responses are carried out in mice and rats, often after intravitreal injections. However, quantitative pharmacokinetics in the mouse eye is poorly understood. Ocular pharmacokinetics studies are usually done in rabbits. We investigated elimination of three compounds ([99mTc]Tc-pentetate, [111In]In-pentetreotide, [99mTc]Tc-human serum albumin with molecular weights of 510.2 Da, 1506.4 Da, and 66.5 kDa, respectively) from mouse vitreous using imaging with single photon emission computed tomography/computed tomography (SPECT/CT). Increasing molecular weight decreased elimination of the compounds from the mouse eyes. Half-lives of [99mTc]Tc-pentetate, [111In]In-pentetreotide, and [99mTc]Tc-human serum albumin in the mouse eyes were 1.8 ± 0.5 h, 4.3 ± 1.7 h, and 30.0 ± 9.0 h, respectively. These values are 3-12-fold shorter than half-lives of similar compounds in the rabbit vitreous. Dose scaling factors were calculated for mouse-to-rabbit and mouse-to-man translation. They were 27-90 and 38-126, respectively, for intravitreal injections in rabbit and man. We show ocular pharmacokinetic parameters for mice and interspecies scaling factors that may augment ocular drug discovery and development.


Assuntos
Olho/diagnóstico por imagem , Olho/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Somatostatina/análogos & derivados , Agregado de Albumina Marcado com Tecnécio Tc 99m/farmacocinética , Pentetato de Tecnécio Tc 99m/farmacocinética , Animais , Humanos , Radioisótopos de Índio/farmacocinética , Injeções Intravítreas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Coelhos , Cintilografia/métodos , Compostos Radiofarmacêuticos/administração & dosagem , Ratos , Somatostatina/farmacocinética , Distribuição Tecidual
4.
Drug Deliv ; 26(1): 532-541, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31090468

RESUMO

Oral drug delivery is an attractive noninvasive alternative to injectables. However, oral delivery of biopharmaceuticals is highly challenging due to low stability during transit in the gastrointestinal tract (GIT), resulting in low systemic bioavailability. Thus, novel formulation strategies are essential to overcome this challenge. An interesting approach is increasing retention in the GIT by utilizing mucoadhesive biomaterials as excipients. Here, we explored the potential of the GRAS excipient sucrose acetate isobutyrate (SAIB) to obtain mucoadhesion in vivo. Mucoadhesive properties of a 90% SAIB/10% EtOH (w/w) drug delivery system (DDS) were assessed using a biosimilar mucus model and evaluation of rheological behavior after immersion in biosimilar intestinal fluid. To ease readability of this manuscript, we will refer to this as SAIB DDS. The effect of SAIB DDS on cell viability and epithelial membrane integrity was tested in vitro prior to in vivo studies that were conducted using SPECT/CT imaging in rats. When combining SAIB DDS with biosimilar mucus, increased viscosity was observed due to secondary interactions between biosimilar mucus and sucrose ester predicting considerable mucoadhesion. Mucoadhesion was confirmed in vivo, as radiolabeled insulin entrapped in SAIB DDS, remained in the small intestine for up to 22 h after administration. Moreover, the integrity of the system was investigated using the dynamic gastric model under conditions simulating the chemical composition of stomach fluid and physical shear stress in the antrum under fasted conditions. In conclusion, SAIB is an interesting and safe biomaterial to promote high mucoadhesion in the GIT after oral administration.


Assuntos
Produtos Biológicos/administração & dosagem , Excipientes/farmacologia , Insulina/administração & dosagem , Sacarose/análogos & derivados , Adesivos Teciduais/farmacologia , Animais , Células CACO-2 , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Ácido Gástrico/química , Humanos , Masculino , Muco/química , Organização e Administração , Ratos Endogâmicos F344 , Reologia , Sacarose/farmacologia
5.
Prog Retin Eye Res ; 57: 134-185, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28028001

RESUMO

Drug delivery to the posterior eye segment is an important challenge in ophthalmology, because many diseases affect the retina and choroid leading to impaired vision or blindness. Currently, intravitreal injections are the method of choice to administer drugs to the retina, but this approach is applicable only in selected cases (e.g. anti-VEGF antibodies and soluble receptors). There are two basic approaches that can be adopted to improve retinal drug delivery: prolonged and/or retina targeted delivery of intravitreal drugs and use of other routes of drug administration, such as periocular, suprachoroidal, sub-retinal, systemic, or topical. Properties of the administration route, drug and delivery system determine the efficacy and safety of these approaches. Pharmacokinetic and pharmacodynamic factors determine the required dosing rates and doses that are needed for drug action. In addition, tolerability factors limit the use of many materials in ocular drug delivery. This review article provides a critical discussion of retinal drug delivery, particularly from the pharmacokinetic point of view. This article does not include an extensive review of drug delivery technologies, because they have already been reviewed several times recently. Instead, we aim to provide a systematic and quantitative view on the pharmacokinetic factors in drug delivery to the posterior eye segment. This review is based on the literature and unpublished data from the authors' laboratory.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Inibidores da Angiogênese/farmacocinética , Retina/metabolismo , Doenças Retinianas/tratamento farmacológico , Animais , Sistemas de Liberação de Medicamentos , Humanos , Injeções Intravítreas , Doenças Retinianas/metabolismo , Distribuição Tecidual
6.
Mol Pharm ; 13(9): 2977-86, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-26741026

RESUMO

Melanin binding is known to affect the distribution and elimination of ocular drugs. The purpose of this study was to evaluate if the extent of drug uptake to primary retinal pigment epithelial (RPE) cells could be estimated based on in vitro binding studies with isolated melanin and evaluate the suitability of single photon emission computed tomography/computed tomography (SPECT/CT) in studying pigment binding in vivo with pigmented and albino rats. Binding of five compounds, basic molecules timolol, chloroquine, and nadolol and acidic molecules methotrexate and 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF), was studied using isolated melanin from porcine choroid-RPE at pH 5.0 and 7.4. The uptake to primary porcine RPE cells was studied with timolol, chloroquine, methotrexate, and CDCF. The cell study setting was modeled using parameters from the in vitro binding study. In vivo kinetics of 3-[I-123]-iodochloroquine was studied by the SPECT/CT method in albino and pigmented rats. All basic compounds bound to melanin at both pH values, whereas the acidic compounds bound more at pH 5.0 than at pH 7.4. The basic compounds (chloroquine, timolol) showed significant cellular uptake, unlike the acidic compounds (methotrexate, CDCF). On the basis of the modeling, melanin binding was a major factor governing the overall drug distribution to the RPE cells. Likewise, melanin binding explained distribution of 3-[I-123]-iodochloroquine in the pigmented RPE, whereas drug accumulation was not seen in the albino rat. This study demonstrates the suitability of noninvasive SPECT/CT imaging in monitoring ocular melanin binding in vivo. These studies are a useful step toward understanding the pharmacokinetic impact of melanin binding.


Assuntos
Melaninas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Células Cultivadas , Cloroquina/metabolismo , Olho/metabolismo , Concentração de Íons de Hidrogênio , Radioisótopos do Iodo , Cinética , Metotrexato/metabolismo , Nadolol/metabolismo , Ligação Proteica , Ratos , Suínos , Timolol/metabolismo
7.
Pharm Dev Technol ; 18(6): 1288-93, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22356486

RESUMO

Acetaldehyde is a known mutagenic substance and has been classified as a group-one carcinogen by the WHO. It is possible to bind acetaldehyde locally in the gastrointestinal (GI) tract with the semi-essential amino acid l-cysteine, which reacts covalently with acetaldehyde and forms compound 2-methyl-thiozolidine-4-carboxylic acid (MTCA). The Caco-2 cell line was used to determine the permeation of l-cysteine and MTCA, as well as the possible cell toxicity of both substances. Neither of the substances permeated through the Caco-2 cells at the concentrations used in this study, and only the highest concentration of MTCA affected the viability of the cells in the MTT (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide) test. These results showed that when l-cysteine is administered in formulations releasing it locally in the lower parts of GI tract, it is not absorbed but can react with acetaldehyde, and that neither l-cysteine nor MTCA is harmful to the cells when present locally in the upper parts of GI tract. This study also shows that MTCA is sensitive at a lower pH of 5.5. Since stable MTCA is desired in different parts of the GI tract, this observation raises concern over the influence of lower pH on l-cysteine-containing product ability to bind and eliminate carcinogenic acetaldehyde.


Assuntos
Cisteína/farmacocinética , Cisteína/toxicidade , Tiazolidinas/farmacocinética , Tiazolidinas/toxicidade , Acetaldeído/farmacocinética , Células CACO-2 , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA