Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 13(3): e9880, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911311

RESUMO

Habitat heterogeneity is a key driver of the diversity and distribution of species. African savannas are experiencing changes in their vegetation structure causing shifts towards increased woody plant cover, which results in vegetation structure homogenization. Given the impact that increasing woody plant cover has on patterns of animal use, resource managers across Africa are implementing habitat management practices that are intended to reduce woody plant cover. To understand the ecological implications of various habitat management practices on arthropod and bird communities, we leveraged large-scale tree clearing and subsequent mowing in an African savanna to understand how changes in both the herbaceous layer and woody plant cover (i.e., structural heterogeneity) may shape arthropod and bird communities at the local scale. We focused on four replicated treatments: (1) annual summer mow, (2) annual winter mow, (3) >5 years since last mow (rest), and (4) an adjacent unmanipulated savanna to act as a control. We found that the mowing treatments significantly influenced vegetation structure both with respect to tree density and herbaceous layer. Both arthropod and bird community composition varied across treatments. Grass biomass was the best predictor of arthropod richness and abundance, with arthropods selecting for areas with high biomass. Insectivorous bird richness and abundance was driven by tree density (i.e., perching locations) and not arthropod abundance. Our results suggest that vegetation management practices contribute to habitat heterogeneity at the landscape scale and increase bird species richness through species turnover. However, we caution that if a single vegetation management practice dominates the landscape, it is plausible that it could lead to the simplification of the avian community.

2.
Anim Cogn ; 26(3): 1049-1063, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36800131

RESUMO

African savanna elephants use pre-ingestive olfactory cues when making dietary choices, and previous research has observed that elephant diet choice is negatively correlated with vegetation species that contain high concentrations of monoterpenes. However, the frequency and concentration of monoterpenes can vary dramatically across plant species. Thus, we aimed to explore the effects that the odours of individual monoterpenes have on elephant diet choice and how these effects vary with concentration. To do this, we conducted three odour-based choice experiments focusing on eight common monoterpenes found in the woody plants in Southern African savannas. In the first experiment, we tested whether elephant diet choice for a frequently consumed plant (Euclea crispa) was influenced by the addition of the odour of an individual monoterpene at a set concentration. In the second experiment, we explored the relative deterrence of each monoterpene. Lastly, we tested how elephant diet choice varied as a function of the addition of individual monoterpene odours at 5%, 10%, and 20% concentrations. We found that the elephants avoided most individual monoterpenes at high concentrations, with the exception being α-pinene. Furthermore, we found that the odours of some individual monoterpenes were, in fact, more deterrent than others. In the third experiment, we found that the elephants avoided ß-pinene, limonene, ocimene, γ-terpinene, and terpinolene across all concentrations, but only avoided sabinene and linalool at high concentrations. Ultimately, our results show that the odour of individual monoterpenes may deter elephant consumption, but that this deterrent effect depends on both the monoterpene and its concentration.


Assuntos
Elefantes , Monoterpenos , Animais , Monoterpenos/farmacologia , Odorantes , Limoneno , Dieta
3.
PLoS One ; 17(8): e0273917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36044453

RESUMO

African savannas are experiencing anthropogenically-induced stressors that are accelerating the increase of woody vegetation cover. To combat this, land managers frequently implement large-scale clearing of trees, which can have a cascading influence on mammalian herbivores. Studies rarely focus on how differences in woody cover influence the herbivore assemblage, making it difficult to assess how aggressive measures, or the lack of management, to counteract increasing woody cover affect the local composition and biodiversity of herbivores. We address this knowledge gap by applying a model-based clustering approach to field observations from MalaMala Game Reserve, South Africa to identify multiple herbivore-vegetation 'configurations,' defined as unique sets of herbivore assemblages (i.e., groups of herbivores) associated with differing woody plant covers. Our approach delineated how tree-clearing influences the distribution and abundance of the herbivore community in relation to surrounding savanna areas, which represent a natural mosaic of varying woody cover. Regardless of season, both intensively managed areas cleared of trees and unmanaged areas with high tree cover contained configurations that had depauperate assemblages of herbivores (low species richness, low abundance). By contrast, habitats with intermediate cover of woody vegetation had much higher richness and abundance. These results have substantial implications for managing African savannas in a rapidly changing climate.


Assuntos
Ecossistema , Herbivoria , Animais , Pradaria , Mamíferos , Árvores , Madeira
4.
Ecol Evol ; 10(20): 11399-11407, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33144973

RESUMO

The ability to assess food quality is crucial to all organisms. Fleshy fruits are a major source of nutrients to various animals, and unlike most food sources, have evolved to be attractive and to be consumed by animals to promote seed dispersal. It has recently been established that fruit scent-the bouquet of volatile chemicals emitted by ripe fruit-is an evolved communication system between plants and animals. Further, it has been argued that chemicals that are synthesized from sugar and its products may be an honest signal for sugar content and fruit quality. Elephants are important seed dispersers for numerous species and possess an olfactory system that is likely to outperform most other animals. We tested the hypothesis that fruit scent signifies sugar content and that elephants are capable of assessing fruit sugar levels based on scent alone. Using a paired-choice test of marula fruits (Sclerocarya birrea) by semitame African elephants, we show that elephants are capable of identifying more sugar-rich fruits based on scent alone and that this is likely based on two chemical compounds: ethanol and ethyl acetate, both downstream products of sugar fermentation. These results shed light on the mechanisms driving elephant feeding ecology, plant signaling, and the coevolutionary process between angiosperms and animal seed dispersers.

5.
Ecol Evol ; 10(19): 10426-10439, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33072270

RESUMO

While feeding, mammalian browsers (primarily eat woody plants) encounter secondary metabolites such as tannins. Browsers may bind these tannins using salivary proteins, whereas mammalian grazers (primarily eat grasses that generally lack tannins) likely would not. Ruminant browsers rechew their food (ruminate) to increase the effectiveness of digestion, which may make them more effective at binding tannins than nonruminants. Few studies have included a sufficient number of species to consider possible scaling with body mass or phylogenetic effects on salivary proteins. Controlling for phylogeny, we ran inhibition radial diffusion assays of the saliva of 28 species of African herbivores that varied in size, feeding strategy, and digestive system. We could not detect the presence of salivary proline-rich proteins that bind tannins in any of these species. However, using the inhibition radial diffusion assay, we found considerable abilities to cope with tannins in all species, albeit to varying degrees. We found no differences between browsers and grazers in the effectiveness of their salivary proteins to bind to and precipitate tannins, nor between ruminants and nonruminants, or scaling with body mass. Three species bound all tannins, but their feeding niches included one browser (gray duiker), one mixed feeder (bush pig), and one grazer (red hartebeest). Five closely related species of small ruminant browsers were very effective in binding tannins. Megaherbivores, considered generalists on account of their large body size, were capable of binding tannins. However, the grazing white rhinoceros was almost as effective at binding tannins as the megaherbivore browsers. We conclude, contrary to earlier predictions, that there were no differences in the relative salivary tannin-binding capability that was related to common ancestry (phylogeny) or to differences in body size.

6.
Oecologia ; 194(3): 383-390, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33083848

RESUMO

Megaherbivores have been of particular interest to scientists because of the physiological and ecological challenges associated with their extreme body size. Yet, one question that has seldom been explored is how browsing megaherbivores cope with plant secondary metabolites (PSMs), such as tannins, found in their food. It is possible that the sheer body size of these megaherbivores allows them to ingest tannins with no deleterious effects. However, it is plausible that megaherbivores must rely on other mechanisms to cope with PSMs, such as the production of salivary tannin-binding proteins. Thus, we aimed to determine whether megaherbivore browsers produce tannin-binding proteins to further reduce the consequences of ingesting a tannin-rich diet. Using a series of laboratory assays, we explored whether elephants, black rhinoceros, and giraffe had tannin-binding proteins in their saliva. We tested for the presence of proline-rich proteins in the saliva using two different approaches: (1) SDS-PAGE using Laemmli's (Laemmli, Nature 227:680-685, 1970) destaining method, and (2) comparative SDS-PAGE gels using Beeley et al.'s (Beeley et al. Electrophoresis 12:493-499, 1991) method for staining and destaining to probe for proline-rich proteins. Then, to test for the tannin-binding affinity of their saliva, we performed an inhibition assay. We did not observe proline-rich proteins in any of the megaherbivore species, but they did have other protein(s) in their saliva that have a high tannin-binding affinity. Our results highlight that, despite their large body sizes, and their abilities to tolerate low-quality food, browsing megaherbivores have likely evolved tannin-binding proteins as a way of coping with the negative effects of tannins.


Assuntos
Proteínas e Peptídeos Salivares , Taninos , Animais , Dieta , Perissodáctilos , Saliva
7.
Proc Biol Sci ; 287(1922): 20192555, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32126952

RESUMO

Prey anti-predator behaviours are influenced by perceived predation risk in a landscape and social information gleaned from herd mates regarding predation risk. It is well documented that high-quality social information about risk can come from heterospecific herd mates. Here, we integrate social information with the landscape of fear to quantify how these landscapes are modified by mixed-species herding. To do this, we investigated zebra vigilance in single- and mixed-species herds across different levels of predation risk (lion versus no lion), and assessed how they manage herd size and the competition-information trade-off associated with grouping behaviour. Overall, zebra performed higher vigilance in high-risk areas. However, mixed-species herding reduced vigilance levels. We estimate that zebra in single-species herds would have to feed for approximately 35 min more per day in low-risk areas and approximately 51 min more in high-risk areas to compensate for the cost of higher vigilance. Furthermore, zebra benefitted from the competition-information trade-off by increasing the number of heterospecifics while keeping the number of zebra in a herd constant. Ultimately, we show that mixed-species herding reduces the effects of predation risk, whereby zebra in mixed-species herds, under high predation risk, perform similar levels of vigilance compared with zebra in low-risk scenarios.


Assuntos
Medo , Comportamento Predatório , Animais , Comportamento Animal , Equidae , Leões , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA