Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Nucl Med Mol Imaging ; 48(5): 1445-1459, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33130960

RESUMO

PURPOSE: The specific binding ratio (SBR) of 123I-FP-CIT (FP-CIT) in the putamen decreases with age by about 5% per decade and most likely is about 10% higher in females. However, the clinical utility of age and sex correction of the SBR is still a matter of debate. This study tested the impact of age and sex correction on the diagnostic performance of the putamen SBR in three independent patient samples. METHODS: Research sample: 207 healthy controls (HC) and 438 Parkinson's disease (PD) patients. Clinical sample A: 183 patients with neurodegenerative parkinsonian syndrome (PS) and 183 patients with non-neurodegenerative PS from one site. Clinical sample B: 84 patients with neurodegenerative PS and 38 patients with non-neurodegenerative PS from another site. Correction for age and sex of the putamen SBR was based on linear regression in the HC or non-neurodegenerative PS, separately in each sample. The area under the ROC curve (AUC) was used as performance measure. RESULTS: The putamen SBR was higher in females compared to males (PPMI: 14%, p < 0.0005; clinical sample A: 7%, p < 0.0005; clinical sample B: 6%, p = 0.361). Age-related decline of the putamen SBR ranged between 3.3 and 10.4% (p ≤ 0.019). In subjects ≥ 50 years, age and sex explained < 10% of SBR between-subjects variance. Correction of the putamen SBR for age and sex resulted in slightly decreased AUC in the PPMI sample (0.9955 versus 0.9969, p = 0.025) and in clinical sample A (0.9448 versus 0.9519, p = 0.057). There was a small, non-significant AUC increase in clinical sample B (0.9828 versus 0.9743, p = 0.232). CONCLUSION: These findings do not support age and sex correction of the putaminal FP-CIT SBR in the diagnostic workup of parkinsonian syndromes. This most likely is explained by the fact that the proportion of between-subjects variance caused by age and sex is considerably below the symptom threshold of about 50% reduction in neurodegenerative PS.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina , Transtornos Parkinsonianos , Feminino , Humanos , Masculino , Tomografia Computadorizada de Emissão de Fóton Único , Tropanos
2.
EJNMMI Phys ; 7(1): 34, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32435936

RESUMO

BACKGROUND: This study investigated the impact of the size of the normal database on the classification performance of the specific binding ratio (SBR) in dopamine transporter (DAT) SPECT with [123I]FP-CIT in different settings. METHODS: The first subject sample comprised 645 subjects from the Parkinson's Progression Marker Initiative (PPMI), 207 healthy controls (HC), and 438 Parkinson's disease (PD) patients. The second sample comprised 372 patients from clinical routine patient care, 186 with non-neurodegenerative parkinsonian syndrome (PS) and 186 with neurodegenerative PS. Single-photon emission computed tomography (SPECT) images of the clinical sample were reconstructed with two different reconstruction algorithms (filtered backprojection, iterative ordered subsets expectation maximization (OSEM) reconstruction with resolution recovery). The putaminal specific binding ratio (SBR) was computed using an anatomical region of interest (ROI) predefined in standard (MNI) space in the Automated Anatomic Labeling (AAL) atlas or using hottest voxels (HV) analysis in large predefined ROIs. SBR values were transformed to z-scores using mean and standard deviation of the SBR in a normal database of varying sizes (n = 5, 10, 15,…, 50) randomly selected from the HC subjects (PPMI sample) or the patients with non-neurodegenerative PS (clinical sample). Accuracy, sensitivity, and specificity for identifying patients with PD or neurodegenerative PS were determined as performance measures using a predefined fixed cutoff on the z-score. This was repeated for 10,000 randomly selected normal databases, separately for each size of the normal database. Mean and 5th percentile of the performance measures over the 10,000 realizations were computed. Accuracy, sensitivity, and specificity when using the whole set of HC or non-neurodegenerative PS subjects as normal database were used as benchmark. RESULTS: Mean loss of accuracy of the putamen SBR z-score was below 1% when the normal database included at least 15 subjects, independent of subject sample (PPMI or clinical), reconstruction method (filtered backprojection or OSEM), and ROI method (AAL or HV). However, the variability of the accuracy of the putamen SBR z-score decreased monotonically with increasing size of normal database and was still considerable at size 15. In order to achieve less than 5% "maximum" loss of accuracy (defined by the 5th percentile) in all settings required at least 25 to 30 subjects in the normal database. Reduction of mean and "maximum" loss of accuracy of the putamen SBR z-score by further increasing the size of the normal database was very small beyond size 40. CONCLUSIONS: The results of this study suggest that 25 to 30 is the minimum size of the normal database to reliably achieve good performance of semi-quantitative analysis in dopamine transporter (DAT) SPECT, independent of the algorithm used for image reconstruction and the ROI method used to estimate the putaminal SBR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA