Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1441234, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39211843

RESUMO

Introduction: Exposure to elevated temperatures and relative humidity expedites the seed aging process, finally leading to seed viability loss. In this context, certain proteins play a pivotal role in safeguarding the longevity of seeds. However, the seedproteomic response to loss viability in Salvia hispanica L., commonly known as chia, remains incompletely understood. Methods: This work explores the application of proteomics as a potent tool for uncovering molecular responses to viability loss caused by artificial aging in two chia genotypes, WN and MN. Results: By using a quantitative label-free proteomics analysis (LC-MS/MS), 1787 proteins wereidentified in chia seeds at a 95% confidence level, including storage proteins, heat shock proteins (HSPs), late embryogenesis abundant proteins (LEA),oleosins, reactive oxygen species (ROS)-related enzymes, and ribosomal proteins. A relatively low percentage of exclusive proteins were identified in viable and non-viable seeds. However, proteins exhibiting differential abundancebetween samples indicated variations in the genotype and physiological status. Specifically, the WN genotype showed 130 proteins with differential abundancecomparing viable and non-viable seeds, while MN displayed changes in the abundance of 174 proteins. While both showed a significant decrease in keyproteins responsible for maintaining seed functionality, longevity, and vigor withhigh-temperature and humidity conditions, such as LEA proteins or HSPs, ROS, and oleosins, distinct responses between genotypes were noted, particularly in ribosomal proteins that were accumulated in MN and diminished in WN seeds. Discussion: Overall, the results emphasize the importance of evaluating changes in proteins of viable and non-viable seeds as they offer valuable insights into the underlying biological mechanisms responsible for the maintenance of chia seed integrity throughout high-temperature and humidity exposure.

2.
Food Chem ; 427: 136706, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37379750

RESUMO

Lipids are relevant during the seed aging process, for which it is pertinent to choose an extraction method that does not alter their nature. Thus, three methods were applied to extract lipids from chia seeds: one used as reference (Soxhlet) and two at room temperature using hexane/ethanol (COBio) and hexane/isopropanol (COHar). The fatty acid composition and the tocopherol content of the oils were analyzed. Also, their oxidative status through the peroxide index, conjugated dienes and trienes, and malondialdehyde were determined. Besides, biophysical techniques, such as DSC and FT-IR, were applied. The extraction yield was not affected by the extraction method, while the fatty acid composition presented slight differences. Despite the high content of PUFAs, the oxidation level was low in all cases, especially in COBio, associated with the high content of α-tocopherol. DSC and FT-IR outcomes coincided with those obtained by conventional studies, resulting in efficient and fast characterization tools.


Assuntos
Hexanos , Óleos de Plantas , Hexanos/química , Óleos de Plantas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Oxirredução , Ácidos Graxos/análise , Sementes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA