Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Sci Rep ; 14(1): 11009, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744988

RESUMO

Cardiac magnetic resonance (CMR) imaging allows precise non-invasive quantification of cardiac function. It requires reliable image segmentation for myocardial tissue. Clinically used software usually offers automatic approaches for this step. These are, however, designed for segmentation of human images obtained at clinical field strengths. They reach their limits when applied to preclinical data and ultrahigh field strength (such as CMR of pigs at 7 T). In our study, eleven animals (seven with myocardial infarction) underwent four CMR scans each. Short-axis cine stacks were acquired and used for functional cardiac analysis. End-systolic and end-diastolic images were labelled manually by two observers and inter- and intra-observer variability were assessed. Aiming to make the functional analysis faster and more reproducible, an established deep learning (DL) model for myocardial segmentation in humans was re-trained using our preclinical 7 T data (n = 772 images and labels). We then tested the model on n = 288 images. Excellent agreement in parameters of cardiac function was found between manual and DL segmentation: For ejection fraction (EF) we achieved a Pearson's r of 0.95, an Intraclass correlation coefficient (ICC) of 0.97, and a Coefficient of variability (CoV) of 6.6%. Dice scores were 0.88 for the left ventricle and 0.84 for the myocardium.


Assuntos
Aprendizado Profundo , Modelos Animais de Doenças , Infarto do Miocárdio , Animais , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Suínos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Humanos , Coração/diagnóstico por imagem , Coração/fisiopatologia , Volume Sistólico , Imageamento por Ressonância Magnética/métodos
2.
Basic Res Cardiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491291

RESUMO

Though myocardial infarction (MI) in pigs is a well-established translational large animal model, it has not yet been widely used for immunotherapy studies, and a comprehensive description of the immune response to MI in this species is lacking. We induced MI in Landrace pigs by balloon occlusion of the left anterior descending artery over 90 min. Within 14 days, the necrotic myocardium was progressively replaced by scar tissue with involvement of myofibroblasts. We characterized the immune response in the heart ex vivo by (immuno)histology, flow cytometry, and RNA sequencing of myocardial tissue on days 3, 7, and 14 after MI. Besides a clear predominance of myeloid cells among heart-infiltrating leukocytes, we detected activated T cells and an increasing proportion of CD4+ Foxp3+ regulatory T cells (Treg), especially in the infarct core-findings that closely mirror what has been observed in mice and humans after MI. Transcriptome data indicated inflammatory activity that was persistent but markedly changing in character over time and linked to extracellular matrix biology. Analysis of lymphocytes in heart-draining lymph nodes revealed significantly higher proliferation rates of T helper cell subsets, including Treg on day 7 after MI, compared to sham controls. Elevated frequencies of myeloid progenitors in the spleen suggest that it might be a site of emergency myelopoiesis after MI in pigs, as previously shown in mice. We thus provide a first description of the immune response to MI in pigs, and our results can aid future research using the species for preclinical immunotherapy studies.

3.
Front Cardiovasc Med ; 10: 1068390, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37255709

RESUMO

A key step in translational cardiovascular research is the use of large animal models to better understand normal and abnormal physiology, to test drugs or interventions, or to perform studies which would be considered unethical in human subjects. Ultrahigh field magnetic resonance imaging (UHF-MRI) at 7 T field strength is becoming increasingly available for imaging of the heart and, when compared to clinically established field strengths, promises better image quality and image information content, more precise functional analysis, potentially new image contrasts, and as all in-vivo imaging techniques, a reduction of the number of animals per study because of the possibility to scan every animal repeatedly. We present here a solution to the dual use problem of whole-body UHF-MRI systems, which are typically installed in clinical environments, to both UHF-MRI in large animals and humans. Moreover, we provide evidence that in such a research infrastructure UHF-MRI, and ideally combined with a standard small-bore UHF-MRI system, can contribute to a variety of spatial scales in translational cardiovascular research: from cardiac organoids, Zebra fish and rodent hearts to large animal models such as pigs and humans. We present pilot data from serial CINE, late gadolinium enhancement, and susceptibility weighted UHF-MRI in a myocardial infarction model over eight weeks. In 14 pigs which were delivered from a breeding facility in a national SARS-CoV-2 hotspot, we found no infection in the incoming pigs. Human scanning using CINE and phase contrast flow measurements provided good image quality of the left and right ventricle. Agreement of functional analysis between CINE and phase contrast MRI was excellent. MRI in arrested hearts or excised vascular tissue for MRI-based histologic imaging, structural imaging of myofiber and vascular smooth muscle cell architecture using high-resolution diffusion tensor imaging, and UHF-MRI for monitoring free radicals as a surrogate for MRI of reactive oxygen species in studies of oxidative stress are demonstrated. We conclude that UHF-MRI has the potential to become an important precision imaging modality in translational cardiovascular research.

4.
J Immunol ; 207(10): 2473-2488, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34625520

RESUMO

Because of its size, anatomical similarities, and now also accessibility to genetic manipulations, pigs are used as animal models for human diseases and immune system development. However, expression and function of CD28, the most important costimulatory receptor expressed by T cells, so far is poorly understood in this species. Using a newly generated mAb (mAb 3D11) with specificity for pig CD28, we detected CD28 on CD8+ and CD4+ αß T cells. Among γδ T cells, CD28 expression was restricted to a small CD2+ subpopulation of phenotypically naive cells. Functionally, CD28 ligation with mAb 3D11-costimulated porcine T cells, enhanced proliferation and cytokine secretion in vitro. We used a second, likewise newly generated but superagonistic, anti-CD28 mAb (CD28-SA; mAb 4D12) to test the function of CD28 on porcine T cells in a pilot study in vivo. Injection of the CD28-SA into pigs in vivo showed a very similar dose-response relationship as in humans (i.e., 100 µg/kg body weight [BW]) of CD28-SA induced a cytokine release syndrome that was avoided at a dose of 10 µg/kg BW and below. The data further suggest that low-dose (10 µg/kg BW) CD28-SA infusion was sufficient to increase the proportion of Foxp3+ regulatory T cells among CD4+ T cells in vivo. The pig is thus a suitable animal model for testing novel immunotherapeutics. Moreover, data from our pilot study in pigs further suggest that low-dose CD28-SA infusion might allow for selective expansion of CD4+ regulatory T cells in humans.


Assuntos
Anticorpos Monoclonais/imunologia , Antígenos CD28/imunologia , Modelos Animais , Suínos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Humanos , Ativação Linfocitária/imunologia
5.
Analyst ; 143(18): 4273-4282, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-30027181

RESUMO

Macrophages are large phagocytes playing a crucial role in the development and progression of atherosclerosis. The phenotypic polarization and activation of macrophages in atherosclerotic plaques depends on their complex micro-environment and at the same time has a major impact on the vulnerability or stability of advanced atherosclerotic lesions. Many in vitro and in vivo studies have been designed to define markers for macrophage subtypes to better understand the mechanism of plaque progression but they have rather added to the confusion. Nonetheless, some of the in vitro defined macrophage subtypes, like the pro-inflammatory M1 or the anti-inflammatory M2a/b/c macrophage, have been shown to be present in atherosclerotic plaques. Herein, we developed a comprehensive workflow to distinguish between human in vitro differentiated pro-inflammatory M1 and anti-inflammatory M2a and M2c macrophages. The cells were analyzed using qPCR and FACS analyses for defining suitable markers on the transcript (mRNA) and protein level as well as MALDI MSI for the assignment of metabolic markers, which can be used for the identification of the corresponding macrophage subtypes in atherosclerotic plaques. Data obtained using both qPCR and FACS analyses were in agreement with the literature. For the analysis of the macrophages with MALDI MSI, a comprehensive workflow was developed and the obtained data were subjected to different statistical analysis methods like principal component analysis (PCA) to define markers for each macrophage type. Our MALDI MSI results revealed that the method produces reliable and reproducible results but that the heterogeneity of the monocytes derived from different donors is too high to define universal markers on the metabolic level. Moreover, the results show that a sample set of three biological replicates is not sufficient to obtain representative data and therefore we recommend performing ring experiments in which the samples are measured by different laboratories.


Assuntos
Diferenciação Celular , Macrófagos/citologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Anti-Inflamatórios , Biomarcadores , Células Cultivadas , Humanos , Monócitos/citologia , Placa Aterosclerótica/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA