Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Genome Res ; 34(3): 498-513, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38508693

RESUMO

Hydractinia is a colonial marine hydroid that shows remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, Hydractinia symbiolongicarpus and Hydractinia echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell-type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from nonself.


Assuntos
Genoma , Hidrozoários , Animais , Hidrozoários/genética , Evolução Molecular , Transcriptoma , Células-Tronco/metabolismo , Masculino , Filogenia , Análise de Célula Única/métodos
2.
bioRxiv ; 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37786714

RESUMO

Hydractinia is a colonial marine hydroid that exhibits remarkable biological properties, including the capacity to regenerate its entire body throughout its lifetime, a process made possible by its adult migratory stem cells, known as i-cells. Here, we provide an in-depth characterization of the genomic structure and gene content of two Hydractinia species, H. symbiolongicarpus and H. echinata, placing them in a comparative evolutionary framework with other cnidarian genomes. We also generated and annotated a single-cell transcriptomic atlas for adult male H. symbiolongicarpus and identified cell type markers for all major cell types, including key i-cell markers. Orthology analyses based on the markers revealed that Hydractinia's i-cells are highly enriched in genes that are widely shared amongst animals, a striking finding given that Hydractinia has a higher proportion of phylum-specific genes than any of the other 41 animals in our orthology analysis. These results indicate that Hydractinia's stem cells and early progenitor cells may use a toolkit shared with all animals, making it a promising model organism for future exploration of stem cell biology and regenerative medicine. The genomic and transcriptomic resources for Hydractinia presented here will enable further studies of their regenerative capacity, colonial morphology, and ability to distinguish self from non-self.

3.
EMBO J ; 42(15): e112934, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708295

RESUMO

N6-methyldeoxyadenosine (6mA) is a chemical alteration of DNA, observed across all realms of life. Although the functions of 6mA are well understood in bacteria and protists, its roles in animal genomes have been controversial. We show that 6mA randomly accumulates in early embryos of the cnidarian Hydractinia symbiolongicarpus, with a peak at the 16-cell stage followed by clearance to background levels two cell cycles later, at the 64-cell stage-the embryonic stage at which zygotic genome activation occurs in this animal. Knocking down Alkbh1, a putative initiator of animal 6mA clearance, resulted in higher levels of 6mA at the 64-cell stage and a delay in the initiation of zygotic transcription. Our data are consistent with 6mA originating from recycled nucleotides of degraded m6A-marked maternal RNA postfertilization. Therefore, while 6mA does not function as an epigenetic mark in Hydractinia, its random incorporation into the early embryonic genome inhibits transcription. In turn, Alkbh1 functions as a genomic 6mA "cleaner," facilitating timely zygotic genome activation. Given the random nature of genomic 6mA accumulation and its ability to interfere with gene expression, defects in 6mA clearance may represent a hitherto unknown cause of various pathologies.


Assuntos
Cnidários , Animais , Genômica , Cinética , Epigenômica , Cognição
4.
Evodevo ; 14(1): 13, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620964

RESUMO

The second annual Cnidarian Model Systems Meeting, aka "Cnidofest", took place in Davis, California from 7 to 10th of September, 2022. The meeting brought together scientists using cnidarians to study molecular and cellular biology, development and regeneration, evo-devo, neurobiology, symbiosis, physiology, and comparative genomics. The diversity of topics and species represented in presentations highlighted the importance and versatility of cnidarians in addressing a wide variety of biological questions. In keeping with the spirit of the first meeting (and its predecessor, Hydroidfest), almost 75% of oral presentations were given by early career researchers (i.e., graduate students and postdocs). In this review, we present research highlights from the meeting.

5.
BMC Biol ; 21(1): 32, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782149

RESUMO

BACKGROUND: Sex determination occurs across animal species, but most of our knowledge about its mechanisms comes from only a handful of bilaterian taxa. This limits our ability to infer the evolutionary history of sex determination within animals. RESULTS: In this study, we generated a linkage map of the genome of the colonial cnidarian Hydractinia symbiolongicarpus and used it to demonstrate that this species has an XX/XY sex determination system. We demonstrate that the X and Y chromosomes have pseudoautosomal and non-recombining regions. We then use the linkage map and a method based on the depth of sequencing coverage to identify genes encoded in the non-recombining region and show that many of them have male gonad-specific expression. In addition, we demonstrate that recombination rates are enhanced in the female genome and that the haploid chromosome number in Hydractinia is n = 15. CONCLUSIONS: These findings establish Hydractinia as a tractable non-bilaterian model system for the study of sex determination and the evolution of sex chromosomes.


Assuntos
Hidrozoários , Cromossomos Sexuais , Masculino , Feminino , Animais , Cromossomos Sexuais/genética , Mapeamento Cromossômico , Cromossomo Y/genética , Hidrozoários/genética , Evolução Molecular
6.
Genome Res ; 33(2): 283-298, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36639202

RESUMO

The epithelial and interstitial stem cells of the freshwater polyp Hydra are the best-characterized stem cell systems in any cnidarian, providing valuable insight into cell type evolution and the origin of stemness in animals. However, little is known about the transcriptional regulatory mechanisms that determine how these stem cells are maintained and how they give rise to their diverse differentiated progeny. To address such questions, a thorough understanding of transcriptional regulation in Hydra is needed. To this end, we generated extensive new resources for characterizing transcriptional regulation in Hydra, including new genome assemblies for Hydra oligactis and the AEP strain of Hydra vulgaris, an updated whole-animal single-cell RNA-seq atlas, and genome-wide maps of chromatin interactions, chromatin accessibility, sequence conservation, and histone modifications. These data revealed the existence of large kilobase-scale chromatin interaction domains in the Hydra genome that contain transcriptionally coregulated genes. We also uncovered the transcriptomic profiles of two previously molecularly uncharacterized cell types: isorhiza-type nematocytes and somatic gonad ectoderm. Finally, we identified novel candidate regulators of cell type-specific transcription, several of which have likely been conserved at least since the divergence of Hydra and the jellyfish Clytia hemisphaerica more than 400 million years ago.


Assuntos
Hydra , Animais , Hydra/genética , Hydra/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Cromossomos , Epigênese Genética
7.
Proc Natl Acad Sci U S A ; 119(40): e2207374119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161920

RESUMO

Most colonial marine invertebrates are capable of allorecognition, the ability to distinguish between themselves and conspecifics. One long-standing question is whether invertebrate allorecognition genes are homologous to vertebrate histocompatibility genes. In the cnidarian Hydractinia symbiolongicarpus, allorecognition is controlled by at least two genes, Allorecognition 1 (Alr1) and Allorecognition 2 (Alr2), which encode highly polymorphic cell-surface proteins that serve as markers of self. Here, we show that Alr1 and Alr2 are part of a family of 41 Alr genes, all of which reside in a single genomic interval called the Allorecognition Complex (ARC). Using sensitive homology searches and highly accurate structural predictions, we demonstrate that the Alr proteins are members of the immunoglobulin superfamily (IgSF) with V-set and I-set Ig domains unlike any previously identified in animals. Specifically, their primary amino acid sequences lack many of the motifs considered diagnostic for V-set and I-set domains, yet they adopt secondary and tertiary structures nearly identical to canonical Ig domains. Thus, the V-set domain, which played a central role in the evolution of vertebrate adaptive immunity, was present in the last common ancestor of cnidarians and bilaterians. Unexpectedly, several Alr proteins also have immunoreceptor tyrosine-based activation motifs and immunoreceptor tyrosine-based inhibitory motifs in their cytoplasmic tails, suggesting they could participate in pathways homologous to those that regulate immunity in humans and flies. This work expands our definition of the IgSF with the addition of a family of unusual members, several of which play a role in invertebrate histocompatibility.


Assuntos
Hidrozoários , Imunoglobulinas , Complexo Principal de Histocompatibilidade , Animais , Hidrozoários/genética , Hidrozoários/imunologia , Imunoglobulinas/química , Imunoglobulinas/genética , Complexo Principal de Histocompatibilidade/genética , Proteínas de Membrana/química , Proteínas de Membrana/genética , Domínios Proteicos , Tirosina/química , Tirosina/genética
8.
Open Biol ; 12(9): 220120, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36069077

RESUMO

Nucleostemin (NS) is a vertebrate gene preferentially expressed in stem and cancer cells, which acts to regulate cell cycle progression, genome stability and ribosome biogenesis. NS and its paralogous gene, GNL3-like (GNL3L), arose in the vertebrate clade after a duplication event from their orthologous gene, G protein Nucleolar 3 (GNL3). Research on invertebrate GNL3, however, has been limited. To gain a greater understanding of the evolution and functions of the GNL3 gene, we have performed studies in the hydrozoan cnidarian Hydractinia symbiolongicarpus, a colonial hydroid that continuously generates pluripotent stem cells throughout its life cycle and presents impressive regenerative abilities. We show that Hydractinia GNL3 is expressed in stem and germline cells. The knockdown of GNL3 reduces the number of mitotic and S-phase cells in Hydractinia larvae of different ages. Genome editing of Hydractinia GNL3 via CRISPR/Cas9 resulted in colonies with reduced growth rates, polyps with impaired regeneration capabilities, gonadal morphological defects, and low sperm motility. Collectively, our study shows that GNL3 is an evolutionarily conserved stem cell and germline gene involved in cell proliferation, animal growth, regeneration and sexual reproduction in Hydractinia, and sheds new light into the evolution of GNL3 and of stem cell systems.


Assuntos
Hidrozoários , Animais , Proliferação de Células , Edição de Genes , Hidrozoários/genética , Masculino , Motilidade dos Espermatozoides , Células-Tronco , Vertebrados/genética
9.
Elife ; 112022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35608899

RESUMO

Neurogenesis is the generation of neurons from stem cells, a process that is regulated by SoxB transcription factors (TFs) in many animals. Although the roles of these TFs are well understood in bilaterians, how their neural function evolved is unclear. Here, we use Hydractinia symbiolongicarpus, a member of the early-branching phylum Cnidaria, to provide insight into this question. Using a combination of mRNA in situ hybridization, transgenesis, gene knockdown, transcriptomics, and in vivo imaging, we provide a comprehensive molecular and cellular analysis of neurogenesis during embryogenesis, homeostasis, and regeneration in this animal. We show that SoxB genes act sequentially at least in some cases. Stem cells expressing Piwi1 and Soxb1, which have broad developmental potential, become neural progenitors that express Soxb2 before differentiating into mature neural cells. Knockdown of SoxB genes resulted in complex defects in embryonic neurogenesis. Hydractinia neural cells differentiate while migrating from the aboral to the oral end of the animal, but it is unclear whether migration per se or exposure to different microenvironments is the main driver of their fate determination. Our data constitute a rich resource for studies aiming at addressing this question, which is at the heart of understanding the origin and development of animal nervous systems.


Assuntos
Cnidários , Animais , Cnidários/genética , Sistema Nervoso , Neurogênese/genética , Neurônios , Células-Tronco
10.
Sci Rep ; 10(1): 17119, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33033276

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
Proc Natl Acad Sci U S A ; 117(37): 22880-22889, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32868440

RESUMO

Polycomb group proteins are essential regulators of developmental processes across animals. Despite their importance, studies on Polycomb are often restricted to classical model systems and, as such, little is known about the evolution of these important chromatin regulators. Here we focus on Polycomb Repressive Complex 1 (PRC1) and trace the evolution of core components of canonical and non-canonical PRC1 complexes in animals. Previous work suggested that a major expansion in the number of PRC1 complexes occurred in the vertebrate lineage. We show that the expansion of the Polycomb Group RING Finger (PCGF) protein family, an essential step for the establishment of the large diversity of PRC1 complexes found in vertebrates, predates the bilaterian-cnidarian ancestor. This means that the genetic repertoire necessary to form all major vertebrate PRC1 complexes emerged early in animal evolution, over 550 million years ago. We further show that PCGF5, a gene conserved in cnidarians and vertebrates but lost in all other studied groups, is expressed in the nervous system in the sea anemone Nematostella vectensis, similar to its mammalian counterpart. Together this work provides a framework for understanding the evolution of PRC1 complex diversity and it establishes Nematostella as a promising model system in which the functional ramifications of this diversification can be further explored.


Assuntos
Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Animais , Antozoários/genética , Núcleo Celular/metabolismo , Cromatina/genética , Bases de Dados Genéticas , Evolução Molecular , Inativação Gênica/fisiologia , Variação Genética/genética , Humanos , Proteínas do Grupo Polycomb/genética , Vertebrados/genética
12.
Sci Rep ; 10(1): 12806, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732955

RESUMO

Analyzing gene function in a broad range of research organisms is crucial for understanding the biological functions of genes and their evolution. Recent studies have shown that short hairpin RNAs (shRNAs) can induce gene-specific knockdowns in two cnidarian species. We have developed a detailed, straightforward, and scalable method to deliver shRNAs into fertilized eggs of the hydrozoan cnidarian Hydractinia symbiolongicarpus via electroporation, yielding effective gene-targeted knockdowns that can last throughout embryogenesis. Our electroporation protocol allows for the transfection of shRNAs into hundreds of fertilized H. symbiolongicarpus eggs simultaneously with minimal embryo death and no long-term harmful consequences on the developing animals. We show RT-qPCR and detailed phenotypic evidence of our method successfully inducing effective knockdowns of an exogenous gene (eGFP) and an endogenous gene (Nanos2), as well as knockdown confirmation by RT-qPCR of two other endogenous genes. We also provide visual confirmation of successful shRNA transfection inside embryos through electroporation. Our detailed protocol for electroporation of shRNAs in H. symbiolongicarpus embryos constitutes an important experimental resource for the hydrozoan community while also serving as a successful model for the development of similar methods for interrogating gene function in other marine invertebrates.


Assuntos
Cnidários/embriologia , Cnidários/genética , Eletroporação/métodos , Desenvolvimento Embrionário/genética , Técnicas de Silenciamento de Genes/métodos , RNA Interferente Pequeno/genética , Animais , Embrião não Mamífero , Proteínas de Fluorescência Verde/genética , Proteínas de Ligação a RNA/genética , Transfecção
13.
Front Microbiol ; 11: 822, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431680

RESUMO

The ability of some symbiotic cnidarians to resist and better withstand stress factors that cause bleaching is a trait that is receiving increased attention. The adaptive bleaching hypothesis postulates that cnidarians that can form a stable symbiosis with thermotolerant Symbiodiniaceae strains may cope better with increasing seawater temperatures. We used polyps of the scyphozoan, Cassiopea xamachana, as a model system to test symbiosis success under heat stress. We sought to determine: (1) if aposymbiotic C. xamachana polyps could establish and maintain a symbiosis with both native and non-native strains of Symbiodiniaceae that all exhibit different tolerances to heat, (2) whether polyps with these newly acquired Symbiodiniaceae strains would strobilate (produce ephyra), and (3) if thermally tolerant Symbiodiniaceae strains that established and maintained a symbiosis exhibited greater success in response to heat stress (even if they are not naturally occurring in Cassiopea). Following recolonization of aposymbiotic C. xamachana polyps with different strains, we found that: (1) strains Smic, Stri, Slin, and Spil all established a stable symbiosis that promoted strobilation and (2) strains Bmin1 and Bmin2 did not establish a stable symbiosis and strobilation did not occur. Strains Smic, Stri, Slin, and Spil were used in a subsequent bleaching experiment; each of the strains was introduced to a subset of aposymbiotic polyps and once polyp tissues were saturated with symbionts they were subjected to elevated temperatures - 32°C and 34°C - for 2 weeks. Our findings indicate that, in general, pairings of polyps with Symbiodiniaceae strains that are native to Cassiopea (Stri and Smic) performed better than a non-native strain (Slin) even though this strain has a high thermotolerance. This suggests a degree of partner specificity that may limit the adaptive potential of certain cnidarians to increased ocean warming. We also observed that the free-living, non-native thermotolerant strain Spil was relatively successful in resisting bleaching during experimental trials. This suggests that free-living Symbiodiniaceae may provide a supply of potentially "new" thermotolerant strains to cnidarians following a bleaching event.

14.
Evodevo ; 11: 7, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226598

RESUMO

Hydractinia, a genus of colonial marine cnidarians, has been used as a model organism for developmental biology and comparative immunology for over a century. It was this animal where stem cells and germ cells were first studied. However, protocols for efficient genetic engineering have only recently been established by a small but interactive community of researchers. The animal grows well in the lab, spawns daily, and its relatively short life cycle allows genetic studies. The availability of genomic tools and resources opens further opportunities for research using this animal. Its accessibility to experimental manipulation, growth- and cellular-plasticity, regenerative ability, and resistance to aging and cancer place Hydractinia as an emerging model for research in many biological and environmental disciplines.

15.
Science ; 367(6479): 757-762, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-32054756

RESUMO

Clonal animals do not sequester a germ line during embryogenesis. Instead, they have adult stem cells that contribute to somatic tissues or gametes. How germ fate is induced in these animals, and whether this process is related to bilaterian embryonic germline induction, is unknown. We show that transcription factor AP2 (Tfap2), a regulator of mammalian germ lines, acts to commit adult stem cells, known as i-cells, to the germ cell fate in the clonal cnidarian Hydractinia symbiolongicarpus Tfap2 mutants lacked germ cells and gonads. Transplanted wild-type cells rescued gonad development but not germ cell induction in Tfap2 mutants. Forced expression of Tfap2 in i-cells converted them to germ cells. Therefore, Tfap2 is a regulator of germ cell commitment across germ line-sequestering and germ line-nonsequestering animals.


Assuntos
Células-Tronco Adultas/citologia , Gametogênese/fisiologia , Células Germinativas/citologia , Gônadas/embriologia , Hidrozoários/embriologia , Fator de Transcrição AP-2/fisiologia , Células-Tronco Adultas/metabolismo , Animais , Feminino , Gametogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/citologia , Hidrozoários/citologia , Hidrozoários/genética , Masculino , Fator de Transcrição AP-2/genética
16.
Evodevo ; 10: 20, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31508195

RESUMO

The 2018 Cnidarian Model Systems Meeting (Cnidofest) was held September 6-9th at the University of Florida Whitney Laboratory for Marine Bioscience in St. Augustine, FL. Cnidofest 2018, which built upon the momentum of Hydroidfest 2016, brought together research communities working on a broad spectrum of cnidarian organisms from North America and around the world. Meeting talks covered diverse aspects of cnidarian biology, with sessions focused on genomics, development, neurobiology, immunology, symbiosis, ecology, and evolution. In addition to interesting biology, Cnidofest also emphasized the advancement of modern research techniques. Invited technology speakers showcased the power of microfluidics and single-cell transcriptomics and demonstrated their application in cnidarian models. In this report, we provide an overview of the exciting research that was presented at the meeting and discuss opportunities for future research.

17.
Science ; 365(6451)2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31346039

RESUMO

The adult Hydra polyp continually renews all of its cells using three separate stem cell populations, but the genetic pathways enabling this homeostatic tissue maintenance are not well understood. We sequenced 24,985 Hydra single-cell transcriptomes and identified the molecular signatures of a broad spectrum of cell states, from stem cells to terminally differentiated cells. We constructed differentiation trajectories for each cell lineage and identified gene modules and putative regulators expressed along these trajectories, thus creating a comprehensive molecular map of all developmental lineages in the adult animal. In addition, we built a gene expression map of the Hydra nervous system. Our work constitutes a resource for addressing questions regarding the evolution of metazoan developmental processes and nervous system function.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Hydra/crescimento & desenvolvimento , Hydra/genética , Células-Tronco/citologia , Animais , Hydra/citologia , Análise de Célula Única , Transcriptoma
18.
Nat Ecol Evol ; 3(5): 724-725, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30988487
19.
BMC Genomics ; 19(1): 649, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30176818

RESUMO

BACKGROUND: Hydractinia symbiolongicarpus, a colonial cnidarian, is a tractable model system for many cnidarian-specific and general biological questions. Until recently, tests of gene function in Hydractinia have relied on laborious forward genetic approaches, randomly integrated transgenes, or transient knockdown of mRNAs. RESULTS: Here, we report the use of CRISPR/Cas9 genome editing to generate targeted genomic insertions in H. symbiolonigcarpus. We used CRISPR/Cas9 to promote homologous recombination of two fluorescent reporters, eGFP and tdTomato, into the Eukaryotic elongation factor 1 alpha (Eef1a) locus. We demonstrate that the transgenes are expressed ubiquitously and are stable over two generations of breeding. We further demonstrate that CRISPR/Cas9 genome editing can be used to mark endogenous proteins with FLAG or StrepII-FLAG affinity tags to enable in vivo and ex vivo protein studies. CONCLUSIONS: This is the first account of CRISPR/Cas9 mediated knockins in Hydractinia and the first example of the germline transmission of a CRISPR/Cas9 inserted transgene in a cnidarian. The ability to precisely insert exogenous DNA into the Hydractinia genome will enable sophisticated genetic studies and further development of functional genomics tools in this understudied cnidarian model.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Técnicas de Introdução de Genes , Hidrozoários/genética , Fator 1 de Elongação de Peptídeos/genética , Animais , Vetores Genéticos , Recombinação Homóloga , Hidrozoários/crescimento & desenvolvimento , Transgenes
20.
Mol Reprod Dev ; 84(11): 1218-1229, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29068507

RESUMO

The maternal-zygotic transition (MZT) describes the developmental reprogramming of gene expression marked by the degradation of maternally supplied gene products and activation of the zygotic genome. While the timing and duration of the MZT vary among taxa, little is known about early-stage transcriptional dynamics in the non-bilaterian phylum Ctenophora. We sought to better understand the extent of maternal mRNA loading and subsequent differential transcript abundance during the earliest stages of development by performing comprehensive RNA-sequencing-based analyses of mRNA abundance in single- and eight-cell stage embryos in the lobate ctenophore Mnemiopsis leidyi. We found 1,908 contigs with significant differential abundance between single- and eight-cell stages, of which 1,208 contigs were more abundant at the single-cell stage and 700 contigs were more abundant at the eight-cell stage. Of the differentially abundant contigs, 267 were exclusively present in the eight-cell samples, providing strong evidence that both the MZT and zygotic genome activation (ZGA) have commenced by the eight-cell stage. Many highly abundant transcripts encode genes involved in molecular mechanisms critical to the MZT, such as maternal transcript degradation, serine/threonine kinase activity, and chromatin remodeling. Our results suggest that chromosomal restructuring, which is critical to ZGA and the initiation of transcriptional regulation necessary for normal development, begins by the third cleavage within 1.5 hr post-fertilization in M. leidyi.


Assuntos
Blastômeros/metabolismo , Ctenóforos/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Genoma , Zigoto/metabolismo , Animais , Blastômeros/citologia , Ctenóforos/genética , Embrião não Mamífero/citologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Zigoto/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA