Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 620(7975): 830-838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532937

RESUMO

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Assuntos
Produção Agrícola , Genoma de Planta , Genômica , Triticum , Triticum/classificação , Triticum/genética , Produção Agrícola/história , História Antiga , Sequenciamento Completo do Genoma , Introgressão Genética , Hibridização Genética , Pão/história , Genoma de Planta/genética , Centrômero/genética
2.
Theor Appl Genet ; 136(7): 159, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344686

RESUMO

KEY MESSAGE: This work reports the physical mapping of an important gene affecting spike compactness located in a low-recombination region of hexaploid wheat. This work paves the way for the eventual isolation and characterization of the factor involved but also opens up possibilities to use this approach to precisely map other wheat genes located on proximal parts of wheat chromosomes that show highly reduced recombination. Mapping wheat genes, in the centromeric and pericentromeric regions (~ 2/3rd of a given chromosome), poses a formidable challenge due to highly suppressed recombination. Using an example of compact spike locus (C-locus), this study provides an approach to precisely map wheat genes in the pericentromeric and centromeric regions that house ~ 30% of wheat genes. In club-wheat, spike compactness is controlled by the dominant C-locus, but previous efforts have failed to localize it, on a particular arm of chromosome 2D. We integrated radiation hybrid (RH) and high-resolution genetic mapping to locate C-locus on the short arm of chromosome 2D. Flanking markers of the C-locus span a physical distance of 11.0 Mb (231.0-242 Mb interval) and contain only 11 high-confidence annotated genes. This work demonstrates the value of this integrated strategy in mapping dominant genes in the low-recombination regions of the wheat genome. A comparison of the mapping resolutions of the RH and genetic maps using common anchored markers indicated that the RH map provides ~ 9 times better resolution that the genetic map even with much smaller population size. This study provides a broadly applicable approach to fine map wheat genes in regions of suppressed recombination.


Assuntos
Mapeamento de Híbridos Radioativos , Triticum , Triticum/genética , Mapeamento Cromossômico , Recombinação Genética
3.
Funct Integr Genomics ; 23(2): 157, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37171682

RESUMO

Wheat (Triticum aestivum) is one of the most important food crops worldwide, providing up to 20% of the caloric intake per day. Developing high-yielding wheat cultivars with tolerance against abiotic and biotic stresses is important to keep up with the increasing human population. Tiller number is one of the major yield-related traits, directly affecting the number of grains produced per plant; however, only a small number of QTL and underlining genes have been identified for this important factor. Identification of novel genetic variation underlying contrasting traits and their precise genetic mapping in wheat is considered difficult due to the complexity and size of the genome; however, advancements in genomic resources have made efficient gene localization more possible. In this study, we report the characterization of a novel tillering number gene using a mutant identified in the forward genetic screen of an ethyl methane sulfonate (EMS)-treated population of cv. "Jagger." By crossing the low tillering mutant with the Jagger wild-type plant, we generated an F2 population and used the MutMap approach to identify a novel physical interval on 11 Mb on chromosome 2DS. Using an F2 population of 442 gametes and polymorphic SNP markers, we were able to delineate the tin6 locus to a 2.1 Mb region containing 22 candidate genes.


Assuntos
Locos de Características Quantitativas , Triticum , Humanos , Triticum/genética , Pão , Mapeamento Cromossômico , Fenótipo
4.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
5.
Nat Commun ; 13(1): 3044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650212

RESUMO

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
6.
Plant Dis ; 105(11): 3669-3676, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34132597

RESUMO

Fusarium head blight (FHB) primarily caused by Fusarium graminearum is a key disease of small grains. Diseased spikes show symptoms of premature bleaching shortly after infection and have aborted or shriveled seeds, resulting in reduced yields. The fungus also deteriorates quality and safety of the grain because of production of mycotoxins, especially deoxynivalenol (DON), which can result in grain being docked or rejected at the point of sale. Genetic host resistance to FHB is quantitative, and no complete genetic resistance against this devastating disease is available. Alternative approaches to develop new sources of FHB resistance are needed. In this study, we performed extensive forward genetic screening of the M4 generation of an ethyl methane sulfonate-induced mutagenized population of cultivar Jagger to isolate variants with FHB resistance. In field testing, 74 mutant lines were found to have resistance against FHB spread, and 30 of these lines also had low DON content. Subsequent testing over 2 years in controlled greenhouse conditions revealed 10 M6 lines showing significantly lower FHB spread. Seven and 6 of those 10 lines also had reduced DON content and fewer Fusarium-damaged kernels, respectively. Future endeavors will include identification of the mutations that led to resistance in these variants.


Assuntos
Fusarium , Metanossulfonato de Etila/farmacologia , Fusarium/genética , Metano , Doenças das Plantas , Triticum/genética
7.
BMC Plant Biol ; 21(1): 74, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33535983

RESUMO

BACKGROUND: Lack of nutritionally appropriate foods is one of the leading causes of obesity in the US and worldwide. Wheat (Triticum aestivum) provides 20% of the calories consumed daily across the globe. The nutrients in the wheat grain come primarily from the starch composed of amylose and amylopectin. Resistant starch content, which is known to have significant human health benefits, can be increased by modifying starch synthesis pathways. Starch synthase enzyme SSIIa, also known as starch granule protein isoform-1 (SGP-1), is integral to the biosynthesis of the branched and readily digestible glucose polymer amylopectin. The goal of this work was to develop a triple null mutant genotype for SSIIa locus in the elite hard red winter wheat variety 'Jagger' and evaluate the effect of the knock-out mutations on resistant starch content in grains with respect to wild type. RESULTS: Knock-out mutations in SSIIa in the three genomes of wheat variety 'Jagger' were identified using TILLING. Subsequently, these loss-of function mutations on A, B, and D genomes were combined by crossing to generate a triple knockout mutant genotype Jag-ssiia-∆ABD. The Jag-ssiia-∆ABD had an amylose content of 35.70% compared to 31.15% in Jagger, leading to ~ 118% increase in resistant starch in the Jag-ssiia-∆ABD genotype of Jagger wheat. The single individual genome mutations also had various effects on starch composition. CONCLUSIONS: Our full null Jag-ssiia-∆ABD mutant showed a significant increase in RS without the shriveled grain phenotype seen in other ssiia knockouts in elite wheat cultivars. Moreover, this study shows the potential for developing nutritionally improved foods in a non-GM approach. Since all the mutants have been developed in an elite wheat cultivar, their adoption in production and supply will be feasible in future.


Assuntos
Amilose/metabolismo , Mutação/genética , Poliploidia , Amido Resistente/metabolismo , Homologia de Sequência de Aminoácidos , Sintase do Amido/genética , Triticum/enzimologia , Triticum/genética , Tamanho do Órgão , Sementes/anatomia & histologia
8.
J Vis Exp ; (149)2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31380839

RESUMO

Targeting Induced Local Lesions IN Genomes (TILLING) is a powerful reverse genetics tool that includes chemical mutagenesis and detection of sequence variation in target genes. TILLING is a highly valuable functional genomics tool for gene validation, especially in small grains in which transformation-based approaches hold serious limitations. Developing a robust mutagenized population is key to determining the efficiency of a TILLING-based gene validation study. A TILLING population with a low overall mutation frequency indicates that an impractically large population must be screened to find desired mutations, whereas a high mutagen concentration leads to high mortality in the population, leading to an insufficient number of mutagenized individuals. Once an effective population is developed, there are multiple ways to detect mutations in a gene of interest, and the choice of platform depends upon the experimental scale and availability of resources. The Cel-1 assay and agarose gel-based approach for mutant identification is convenient, reproducible, and a less resource-intensive platform. It is advantageous in that it is simple, requiring no computational knowledge, and it is especially suitable for validation of a small number of genes with basic lab equipment. In the present article, described are the methods for development of a good TILLING population, including preparation of the dosage curve, mutagenesis and maintenance of the mutant population, and screening of the mutant population using the PCR-based Cel-1 assay.


Assuntos
Grão Comestível/genética , Metanossulfonato de Etila/farmacologia , Marcação de Genes/métodos , Genoma de Planta/genética , Mutagênicos/farmacologia , Doenças das Plantas/genética , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas/genética , Mutagênese , Mutação
9.
Front Plant Sci ; 9: 1665, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30487809

RESUMO

Aegilops tauschii (2n = 2x = 14, genome DD), also known as Tausch's goatgrass, is the D genome donor of bread or hexaploid wheat Triticum aestivum (2n = 2x = 42, AABBDD genome). It is a rich reservoir of useful genes for biotic and abiotic stress tolerance for wheat improvement. We developed a TILLING (Targeting Induced Local Lesions In Genomes) resource for Ae. tauschii for discovery and validation of useful genes in the D genome of wheat. The population, referred to as TILL-D, was developed with ethyl methanesulfonate (EMS) mutagen. The survival rate in M1 generation was 73%, out of which 22% plants were sterile. In the M2 generation 25% of the planted seeds showed phenotypic mutations such as albinos, chlorinas, no germination, variegated, sterile and partially fertile events, and 2,656 produced fertile M2 plants. The waxy gene was used to calculate the mutation frequency (1/70 kb) of the developed population, which was found to be higher than known mutation frequencies for diploid plants (1/89-1/1000 kb), but lower than that for a polyploid species (1/24-1/51 kb). The TILL-D resource, together with the newly published Ae. tauschii reference genome sequence, will facilitate gene discoveries and validations of agronomically important traits and their eventual fine transfer in bread wheat.

10.
Sci Signal ; 4(180): ra43, 2011 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-21730325

RESUMO

The correct interpretation of a gradient of the morphogen Hedgehog (Hh) during development requires phosphorylation of the Hh signaling activator Smoothened (Smo); however, the molecular mechanism by which Smo transduces graded Hh signaling is not well understood. We show that regulation of the phosphorylation status of Smo by distinct phosphatases at specific phosphorylated residues creates differential thresholds of Hh signaling. Phosphorylation of Smo was initiated by adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase (PKA) and further enhanced by casein kinase I (CKI). We found that protein phosphatase 1 (PP1) directly dephosphorylated PKA-phosphorylated Smo to reduce signaling mediated by intermediate concentrations of Hh, whereas PP2A specifically dephosphorylated PKA-primed, CKI-phosphorylated Smo to restrict signaling by high concentrations of Hh. We also established a functional link between sequentially phosphorylated Smo species and graded Hh activity. Thus, we propose a sequential phosphorylation model in which precise interpretation of morphogen concentration can be achieved upon versatile phosphatase-mediated regulation of the phosphorylation status of an essential activator in developmental signaling.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Caseína Quinase I , Proteínas Quinases Dependentes de AMP Cíclico , Fosforilação , Processamento de Proteína Pós-Traducional , Receptor Smoothened
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA