RESUMO
Immunotherapies are revolutionizing cancer care, but many patients do not achieve durable responses and immune-related adverse events are difficult to predict. Quantifying the hundreds of proteins involved in cancer immunity has the potential to provide biomarkers to monitor and predict tumor response. We previously developed robust, multiplexed quantitative assays for immunomodulatory proteins using targeted mass spectrometry, providing measurements that can be performed reproducibly and harmonized across laboratories. Here, we expand upon those efforts in presenting data from a multiplexed immuno-oncology (IO)-3 assay panel targeting 43 peptides representing 39 immune- and inflammation-related proteins. A suite of novel monoclonal antibodies was generated as assay reagents, and the fully characterized antibodies are made available as a resource to the community. The publicly available dataset contains complete characterization of the assay performance, as well as the mass spectrometer parameters and reagent information necessary for implementation of the assay. Quantification of the proteins will provide benefit to correlative studies in clinical trials, identification of new biomarkers, and improve understanding of the immune response in cancer.
Assuntos
Anticorpos Monoclonais , Espectrometria de Massas , Neoplasias , Humanos , Anticorpos Monoclonais/imunologia , Imunoterapia , Neoplasias/imunologiaRESUMO
A wealth of proteogenomic data has been generated using cancer samples to deepen our understanding of the mechanisms of cancer and how biological networks are altered in association with somatic mutation of tumor suppressor genes, such as TP53 and PTEN. To generate functional signatures of TP53 or PTEN loss, we profiled the RNA and phosphoproteomes of the MCF10A epithelial cell line, along with its congenic TP53- or PTEN-knockout derivatives, upon perturbation with the monofunctional DNA alkylating agent methyl methanesulfonate (MMS) vs. mock treatment. To enable quantitative and reproducible mass spectrometry data generation, the cell lines were SILAC-labeled (stable isotope labeling with amino acids in cell culture), and the experimental design included label swapping and biological replicates. All data are publicly available and may be used to advance our understanding of the TP53 and PTEN tumor suppressor genes and to provide functional signatures for bioinformatic analyses of proteogenomic datasets.
Assuntos
Neoplasias , RNA , Humanos , Dano ao DNA , Células Epiteliais , Mutação , PTEN Fosfo-Hidrolase/genética , Proteína Supressora de Tumor p53/genéticaRESUMO
Targeted mass spectrometry (MS)-based proteomic assays, such as multiplexed multiple reaction monitoring (MRM)-MS assays, enable sensitive and specific quantification of proteotypic peptides as stoichiometric surrogates for proteins. Efforts are underway to expand the use of MRM-MS assays in clinical environments, which requires a reliable strategy to monitor proteolytic digestion efficiency within individual samples. Towards this goal, extended stable isotope-labeled standard (SIS) peptides (hE), which incorporate native proteolytic cleavage sites, can be spiked into protein lysates prior to proteolytic (trypsin) digestion, and release of the tryptic SIS peptide (hT) can be monitored. However, hT measurements alone cannot monitor the extent of digestion and may be confounded by matrix effects specific to individual patient samples; therefore, they are not sufficient to monitor sample-to-sample digestion variability. We hypothesized that measuring undigested hE, along with its paired hT, would improve detection of digestion issues compared to only measuring hT. We tested the ratio of the SIS pair measurements, or hE/hT, as a quality control (QC) metric of trypsin digestion for two MRM assays: a direct-MRM (398 targets) and an immuno-MRM (126 targets requiring immunoaffinity peptide enrichment) assay, with extended SIS peptides observable for 54% (216) and 62% (78) of the targets, respectively. We evaluated the quantitative bias for each target in a series of experiments that adversely affected proteolytic digestion (e.g., variable digestion times, pH, and temperature). We identified a subset of SIS pairs (36 for the direct-MRM, 7 for the immuno-MRM assay) for which the hE/hT ratio reliably detected inefficient digestion that resulted in decreased assay sensitivity and unreliable endogenous quantification. The hE/hT ratio was more responsive to a decrease in digestion efficiency than a metric based on hT measurements alone. For clinical-grade MRM-MS assays, this study describes a ready-to-use QC panel and also provides a road map for designing custom QC panels.
Assuntos
Peptídeos , Proteômica , Humanos , Proteômica/métodos , Tripsina/química , Peptídeos/análise , Espectrometria de Massas/métodos , Controle de Qualidade , DigestãoRESUMO
Introduction: Immunotherapy is an effective treatment for a subset of cancer patients, and expanding the benefits of immunotherapy to all cancer patients will require predictive biomarkers of response and immune-related adverse events (irAEs). To support correlative studies in immunotherapy clinical trials, we are developing highly validated assays for quantifying immunomodulatory proteins in human biospecimens. Methods: Here, we developed a panel of novel monoclonal antibodies and incorporated them into a novel, multiplexed, immuno-multiple reaction monitoring mass spectrometry (MRM-MS)-based proteomic assay targeting 49 proteotypic peptides representing 43 immunomodulatory proteins. Results and discussion: The multiplex assay was validated in human tissue and plasma matrices, where the linearity of quantification was >3 orders of magnitude with median interday CVs of 8.7% (tissue) and 10.1% (plasma). Proof-of-principle demonstration of the assay was conducted in plasma samples collected in clinical trials from lymphoma patients receiving an immune checkpoint inhibitor. We provide the assays and novel monoclonal antibodies as a publicly available resource for the biomedical community.
RESUMO
Immunotherapies are revolutionizing cancer care, producing durable responses and potentially cures in a subset of patients. However, response rates are low for most tumors, grade 3/4 toxicities are not uncommon, and our current understanding of tumor immunobiology is incomplete. While hundreds of immunomodulatory proteins in the tumor microenvironment shape the anti-tumor response, few of them can be reliably quantified. To address this need, we developed a multiplex panel of targeted proteomic assays targeting 52 peptides representing 46 proteins using peptide immunoaffinity enrichment coupled to multiple reaction monitoring-mass spectrometry. We validated the assays in tissue and plasma matrices, where performance figures of merit showed over 3 orders of dynamic range and median inter-day CVs of 5.2% (tissue) and 21% (plasma). A feasibility study in clinical biospecimens showed detection of 48/52 peptides in frozen tissue and 38/52 peptides in plasma. The assays are publicly available as a resource for the research community.
Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Peptídeos/análise , Proteoma/análise , Proteômica/métodos , Manejo de Espécimes/métodos , Anticorpos/análise , Anticorpos/imunologia , Western Blotting , Linhagem Celular Tumoral , Células HeLa , Humanos , Células Jurkat , Células MCF-7 , Peptídeos/sangue , Peptídeos/imunologia , Proteoma/genética , Proteoma/imunologia , RNA-Seq/métodos , Reprodutibilidade dos TestesRESUMO
SUMMARY: A primary goal of the US National Cancer Institute's Ras initiative at the Frederick National Laboratory for Cancer Research is to develop methods to quantify RAS signaling to facilitate development of novel cancer therapeutics. We use targeted proteomics technologies to develop a community resource consisting of 256 validated multiple reaction monitoring (MRM)-based, multiplexed assays for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. As proof of concept, we quantify the response of melanoma (A375 and SK-MEL-2) and colorectal cancer (HCT-116 and HT-29) cell lines to BRAF inhibition by PLX-4720. These assays replace over 60 Western blots with quantitative mass spectrometry-based assays of high molecular specificity and quantitative precision, showing the value of these methods for pharmacodynamic measurements and mechanism of action studies. Methods, fit-for-purpose validation, and results are publicly available as a resource for the community at assays.cancer.gov. MOTIVATION: A lack of quantitative, multiplexable assays for phosphosignaling limits comprehensive investigation of aberrant signaling in cancer and evaluation of novel treatments. To alleviate this limitation, we sought to develop assays using targeted mass spectrometry for quantifying protein expression and phosphorylation through the receptor tyrosine kinase, MAPK, and AKT signaling networks. The resulting assays provide a resource for replacing over 60 Western blots in examining cancer signaling and tumor biology with high molecular specificity and quantitative rigor.
Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectrometria de Massas/métodos , Receptores Proteína Tirosina Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno , TirosinaRESUMO
The ATM serine/threonine kinase (HGNC: ATM) is involved in initiation of repair of DNA double-stranded breaks, and ATM inhibitors are currently being tested as anti-cancer agents in clinical trials, where pharmacodynamic (PD) assays are crucial to help guide dose and scheduling and support mechanism of action studies. To identify and quantify PD biomarkers of ATM inhibition, we developed and analytically validated a 51-plex assay (DDR-2) quantifying protein expression and DNA damage-responsive phosphorylation. The median lower limit of quantification was 1.28 fmol, the linear range was over 3 orders of magnitude, the median inter-assay variability was 11% CV, and 86% of peptides were stable for storage prior to analysis. Use of the assay was demonstrated to quantify signaling following ionizing radiation-induced DNA damage in both immortalized lymphoblast cell lines and primary human peripheral blood mononuclear cells, identifying PD biomarkers for ATM inhibition to support preclinical and clinical studies.
RESUMO
BACKGROUND: Conventional HER2-targeting therapies improve outcomes for patients with HER2-positive breast cancer (BC), defined as tumors showing HER2 protein overexpression by immunohistochemistry and/or ERBB2 gene amplification determined by in situ hybridization (ISH). Emerging HER2-targeting compounds show benefit in some patients with neither HER2 protein overexpression nor ERBB2 gene amplification, creating a need for new assays to select HER2-low tumors for treatment with these compounds. We evaluated the analytical performance of a targeted mass spectrometry-based assay for quantifying HER2 protein in formalin-fixed paraffin-embedded (FFPE) and frozen BC biopsies. METHODS: We used immunoaffinity-enrichment coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM-MS) to quantify HER2 protein (as peptide GLQSLPTHDPSPLQR) in 96 frozen and 119 FFPE BC biopsies. We characterized linearity, lower limit of quantification (LLOQ), and intra- and inter-day variation of the assay in frozen and FFPE tissue matrices. We determined concordance between HER2 immuno-MRM-MS and predicate immunohistochemistry and ISH assays and examined the benefit of multiplexing the assay to include proteins expressed in tumor subcompartments (e.g., stroma, adipose, lymphocytes, epithelium) to account for tissue heterogeneity. RESULTS: HER2 immuno-MRM-MS assay linearity was ≥103, assay coefficient of variation was 7.8% (FFPE) and 5.9% (frozen) for spiked-in analyte, and 7.7% (FFPE) and 7.9% (frozen) for endogenous measurements. Immuno-MRM-MS-based HER2 measurements strongly correlated with predicate assay HER2 determinations, and concordance was improved by normalizing to glyceraldehyde-3-phosphate dehydrogenase. HER2 was quantified above the LLOQ in all tumors. CONCLUSIONS: Immuno-MRM-MS can be used to quantify HER2 in FFPE and frozen BC biopsies, even at low HER2 expression levels.
Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/patologia , Feminino , Formaldeído/química , Humanos , Espectrometria de Massas/métodos , Inclusão em Parafina , Receptor ErbB-2/análise , Fixação de Tecidos/métodosAssuntos
Biomarcadores Tumorais/análise , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Receptores de Progesterona/análise , Biópsia por Agulha , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Neoplasias da Mama/patologia , Humanos , Espectrometria de Massas/métodos , Estudo de Prova de ConceitoRESUMO
RAS genes are frequently mutated in cancer and have for decades eluded effective therapeutic attack. The National Cancer Institute's RAS Initiative has a focus on understanding pathways and discovering therapies for RAS-driven cancers. Part of these efforts is the generation of novel reagents to enable the quantification of RAS network proteins. Here we present a dataset describing the development, validation (following consensus principles developed by the broader research community), and distribution of 104 monoclonal antibodies (mAbs) enabling detection of 27 phosphopeptides and 69 unmodified peptides from 20 proteins in the RAS network. The dataset characterizes the utility of the antibodies in a variety of applications, including Western blotting, immunoprecipitation, protein array, immunohistochemistry, and targeted mass spectrometry. All antibodies and characterization data are publicly available through the CPTAC Antibody Portal, Panorama Public Repository, and/or PRIDE databases. These reagents will aid researchers in discerning pathways and measuring expression changes in the RAS signaling network.
Assuntos
Anticorpos Monoclonais/química , Genes ras , Transdução de Sinais , Linhagem Celular , Impressões Digitais de DNA , Humanos , Indicadores e Reagentes/química , Repetições de Microssatélites , Neoplasias/genéticaRESUMO
The Fanconi anemia pathway is an important coordinator of DNA repair pathways and is particularly relevant to repair of DNA inter-strand crosslinks. Central to the pathway is monoubiquitination of FANCD2, requiring the function of multiple proteins in an upstream Fanconi core complex. We present development and analytical characterization of a novel assay for quantification of unmodified and monoubiquitinated FANCD2 proteoforms, based on peptide immunoaffinity enrichment and targeted multiple reaction monitoring mass spectrometry (immuno-MRM). The immuno-MRM assay is analytically characterized using fit-for-purpose method validation. The assay linear range is >3 orders of magnitude with total repeatability <16% CV. In proof-of-principle experiments, we demonstrate application of the multiplex assay by quantifying the FANCD2 proteoforms following mitomycin-c treatment in an isogenic pair of FancA-corrected and uncorrected cell lines, as well as primary peripheral blood mononuclear cells from Fanconi Anemia patients. Additionally, we demonstrate detection of endogenous FANCD2 monoubiquitination in human breast cancer tissue. The immuno-MRM assay provides a potential functional diagnostic for patients with Fanconi Anemia with defects in the upstream FA complex or FANCD2, and a potential test for predicting sensitivity to DNA cross-linking agents in human cancers.
Assuntos
Proteína do Grupo de Complementação D2 da Anemia de Fanconi/análise , Espectrometria de Massas/métodos , Ubiquitinação , Linhagem Celular , Reagentes de Ligações Cruzadas/toxicidade , DNA/efeitos dos fármacos , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/efeitos dos fármacos , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Feminino , Humanos , Mitomicina/toxicidadeRESUMO
A lack of analytically robust and multiplexed assays has hampered studies of the large, branched phosphosignaling network responsive to DNA damage. To address this need, we developed and fully analytically characterized a 62-plex assay quantifying protein expression and post-translational modification (phosphorylation and ubiquitination) after induction of DNA damage. The linear range was over 3 orders of magnitude, the median inter-assay variability was 10% CV and the vast majority (â¼85%) of assays were stable after extended storage. The multiplexed assay was applied in proof-of-principle studies to quantify signaling after exposure to genotoxic stress (ionizing radiation and 4-nitroquinoline 1-oxide) in immortalized cell lines and primary human cells. The effects of genomic variants and pharmacologic kinase inhibition (ATM/ATR) were profiled using the assay. This study demonstrates the utility of a quantitative multiplexed assay for studying cellular signaling dynamics, and the potential application to studies on inter-individual variation in the radiation response.
Assuntos
Dano ao DNA , Espectrometria de Massas , Fosfoproteínas/metabolismo , Transdução de Sinais/genética , Sequência de Aminoácidos , Células HeLa , Humanos , Fosfoproteínas/química , Fosforilação/genética , Processamento de Proteína Pós-Traducional/genética , Ubiquitinação/genéticaRESUMO
Peptide immunoaffinity enrichment coupled with targeted mass spectrometry is a quantitative approach for the robust and reproducible quantification of peptide analytes. The approach is capable of multiplexed quantification of peptides, including posttranslational modifications such as phosphorylation. Anti-peptide antibodies are used to enrich analytes and heavy stable isotope-labeled standards. The enriched peptides are directly measured by multiple reaction monitoring (MRM), a well-characterized quantitative mass spectrometry-based method. Quantification is performed by measuring the analyte (light) peptide response relative to the heavy standard, which is spiked at a known concentration. Here, we describe the methodology for multiplexed measurement of phosphorylated peptides on the ATM kinase and their nonmodified peptide analogs in cellular lysates. The method provides quantitative measurements of phospho-signaling and can be extended to a number of other phosphopeptides and sample types.
Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Espectrometria de Massas/métodos , Peptídeos/química , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cromatografia Líquida , Dano ao DNA/genética , Humanos , Proteômica/métodos , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
Despite a clinical, economic, and regulatory imperative to develop companion diagnostics, precious few new biomarkers have been successfully translated into clinical use, due in part to inadequate protein assay technologies to support large-scale testing of hundreds of candidate biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues. Although the feasibility of using targeted, multiple reaction monitoring mass spectrometry (MRM-MS) for quantitative analyses of FFPE tissues has been demonstrated, protocols have not been systematically optimized for robust quantification across a large number of analytes, nor has the performance of peptide immuno-MRM been evaluated. To address this gap, we used a test battery approach coupled to MRM-MS with the addition of stable isotope-labeled standard peptides (targeting 512 analytes) to quantitatively evaluate the performance of three extraction protocols in combination with three trypsin digestion protocols (i.e., nine processes). A process based on RapiGest buffer extraction and urea-based digestion was identified to enable similar quantitation results from FFPE and frozen tissues. Using the optimized protocols for MRM-based analysis of FFPE tissues, median precision was 11.4% (across 249 analytes). There was excellent correlation between measurements made on matched FFPE and frozen tissues, both for direct MRM analysis (R(2) = 0.94) and immuno-MRM (R(2) = 0.89). The optimized process enables highly reproducible, multiplex, standardizable, quantitative MRM in archival tissue specimens.
Assuntos
Células/química , Proteômica/métodos , Biomarcadores/análise , Formaldeído , Humanos , Marcação por Isótopo , Espectrometria de Massas/métodos , Inclusão em Parafina , Fixação de Tecidos , Preservação de Tecido/métodosRESUMO
Immunoaffinity enrichment of peptides coupled to multiple reaction monitoring-mass spectrometry (immuno-MRM) enables highly specific, sensitive, and precise quantification of peptides and post-translational modifications. Major obstacles to developing a large number of immuno-MRM assays are poor availability of monoclonal antibodies (mAbs) validated for immunoaffinity enrichment of peptides and the cost and lead time of developing the antibodies de novo. Although many thousands of mAbs are commercially offered, few have been tested for application to immunoaffinity enrichment of peptides. In this study, we tested the success rate of using commercially available mAbs for peptide immuno-MRM assays. We selected 105 commercial mAbs (76 targeting non-modified "pan" epitopes, 29 targeting phosphorylation) to proteins associated with the DNA damage response network. We found that 8 of the 76 pan (11%) and 5 of the 29 phospho-specific mAbs (17%) captured tryptic peptides (detected by LC-MS/MS) of their protein targets from human cell lysates. Seven of these mAbs were successfully used to configure and analytically characterize immuno-MRM assays. By applying selection criteria upfront, the results indicate that a screening success rate of up to 24% is possible, establishing the feasibility of screening a large number of catalog antibodies to provide readily-available assay reagents.
Assuntos
Anticorpos Monoclonais/química , Espectrometria de Massas/métodos , Cromatografia de Afinidade , FosforilaçãoRESUMO
BACKGROUND: For many years, basic and clinical researchers have taken advantage of the analytical sensitivity and specificity afforded by mass spectrometry in the measurement of proteins. Clinical laboratories are now beginning to deploy these work flows as well. For assays that use proteolysis to generate peptides for protein quantification and characterization, synthetic stable isotope-labeled internal standard peptides are of central importance. No general recommendations are currently available surrounding the use of peptides in protein mass spectrometric assays. CONTENT: The Clinical Proteomic Tumor Analysis Consortium of the National Cancer Institute has collaborated with clinical laboratorians, peptide manufacturers, metrologists, representatives of the pharmaceutical industry, and other professionals to develop a consensus set of recommendations for peptide procurement, characterization, storage, and handling, as well as approaches to the interpretation of the data generated by mass spectrometric protein assays. Additionally, the importance of carefully characterized reference materials-in particular, peptide standards for the improved concordance of amino acid analysis methods across the industry-is highlighted. The alignment of practices around the use of peptides and the transparency of sample preparation protocols should allow for the harmonization of peptide and protein quantification in research and clinical care.
Assuntos
Técnicas de Laboratório Clínico , Espectrometria de Massas , Peptídeos/análise , Proteômica , Manejo de Espécimes , Guias como Assunto , Humanos , Peptídeos/isolamento & purificação , PesquisadoresRESUMO
Immunoaffinity enrichment of peptides coupled to targeted, multiple reaction monitoring-mass spectrometry (immuno-MRM) has recently been developed for quantitative analysis of peptide and protein expression. As part of this technology, antibodies are generated to short, linear, tryptic peptides that are well-suited for detection by mass spectrometry. Despite its favorable analytical performance, a major obstacle to widespread adoption of immuno-MRM is a lack of validated affinity reagents because commercial antibody suppliers are reluctant to commit resources to producing anti-peptide antibodies for immuno-MRM while the market is much larger for conventional technologies, especially Western blotting and ELISA. Part of this reluctance has been the concern that affinity reagents generated to short, linear, tryptic peptide sequences may not perform well in traditional assays that detect full-length proteins. In this study, we test the feasibility and success rates of generating immuno-MRM monoclonal antibodies (mAbs) (targeting tryptic peptide antigens) that are also compatible with conventional, protein-based immuno-affinity technologies. We generated 40 novel, peptide immuno-MRM assays and determined that the cross-over success rates for using immuno-MRM monoclonals for Western blotting is 58% and for ELISA is 43%, which compare favorably to cross-over success rates amongst conventional immunoassay technologies. These success rates could most likely be increased if conventional and immuno-MRM antigen design strategies were combined, and we suggest a workflow for such a comprehensive approach. Additionally, the 40 novel immuno-MRM assays underwent fit-for-purpose analytical validation, and all mAbs and assays have been made available as a resource to the community via the Clinical Proteomic Tumor Analysis Consortium's (CPTAC) Antibody (http://antibodies.cancer.gov) and Assay Portals (http://assays.cancer.gov), respectively. This study also represents the first determination of the success rate (92%) for generating mAbs for immuno-MRM using a recombinant B cell cloning approach, which is considerably faster than the traditional hybridoma approach.
Assuntos
Anticorpos Monoclonais/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Espectrometria de Massas/métodos , Peptídeos/imunologia , Sequência de Aminoácidos , Animais , Humanos , Hibridomas/imunologia , Indicadores e Reagentes , Dados de Sequência Molecular , Peptídeos/química , Coelhos , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos TestesRESUMO
Access to a wider range of quantitative protein assays would significantly impact the number and use of tissue markers in guiding disease treatment. Quantitative mass spectrometry-based peptide and protein assays, such as immuno-SRM assays, have seen tremendous growth in recent years in application to protein quantification in biological fluids such as plasma or urine. Here, we extend the capability of the technique by demonstrating the application of a multiplexed immuno-SRM assay for quantification of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) levels in cell line lysates and human surgical specimens. The performance of the assay was characterized using peptide response curves, with linear ranges covering approximately four orders of magnitude and limits of detection in the low fmol/mg lysate range. Reproducibility was acceptable with median coefficients of variation of approximately 10%. We applied the assay to measurements of ER and HER2 in well-characterized cell line lysates with good discernment based on ER/HER2 status. Finally, the proteins were measured in surgically resected breast cancers, and the results showed good correlation with ER/HER2 status determined by clinical assays. This is the first implementation of the peptide-based immuno-SRM assay technology in cell lysates and human surgical specimens.
Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/diagnóstico , Imunoensaio/métodos , Espectrometria de Massas/métodos , Receptor ErbB-2/análise , Receptores de Estrogênio/análise , Sequência de Aminoácidos , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/metabolismo , Calibragem , Extratos Celulares/química , Linhagem Celular , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Limite de Detecção , Dados de Sequência Molecular , Peptídeos/análise , Peptídeos/metabolismo , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
High-throughput technologies can now identify hundreds of candidate protein biomarkers for any disease with relative ease. However, because there are no assays for the majority of proteins and de novo immunoassay development is prohibitively expensive, few candidate biomarkers are tested in clinical studies. We tested whether the analytical performance of a biomarker identification pipeline based on targeted mass spectrometry would be sufficient for data-dependent prioritization of candidate biomarkers, de novo development of assays and multiplexed biomarker verification. We used a data-dependent triage process to prioritize a subset of putative plasma biomarkers from >1,000 candidates previously identified using a mouse model of breast cancer. Eighty-eight novel quantitative assays based on selected reaction monitoring mass spectrometry were developed, multiplexed and evaluated in 80 plasma samples. Thirty-six proteins were verified as being elevated in the plasma of tumor-bearing animals. The analytical performance of this pipeline suggests that it should support the use of an analogous approach with human samples.
Assuntos
Biomarcadores Tumorais/sangue , Análise Química do Sangue/métodos , Espectrometria de Massas/métodos , Proteínas de Neoplasias/sangue , Neoplasias Experimentais/sangue , Mapeamento de Peptídeos/métodos , Proteoma/análise , Animais , Camundongos , Proteômica/métodosRESUMO
PURPOSE: We generated extensive transcriptional and proteomic profiles from a Her2-driven mouse model of breast cancer that closely recapitulates human breast cancer. This report makes these data publicly available in raw and processed forms, as a resource to the community. Importantly, we previously made biospecimens from this same mouse model freely available through a sample repository, so researchers can obtain samples to test biological hypotheses without the need of breeding animals and collecting biospecimens. EXPERIMENTAL DESIGN: Twelve datasets are available, encompassing 841 LC-MS/MS experiments (plasma and tissues) and 255 microarray analyses of multiple tissues (thymus, spleen, liver, blood cells, and breast). Cases and controls were rigorously paired to avoid bias. RESULTS: In total, 18,880 unique peptides were identified (PeptideProphet peptide error rate ≤1%), with 3884 and 1659 non-redundant protein groups identified in plasma and tissue datasets, respectively. Sixty-one of these protein groups overlapped between cancer plasma and cancer tissue. CONCLUSIONS AND CLINICAL RELEVANCE: These data are of use for advancing our understanding of cancer biology, for software and quality control tool development, investigations of analytical variation in MS/MS data, and selection of proteotypic peptides for multiple reaction monitoring-MS. The availability of these datasets will contribute positively to clinical proteomics.