Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Water Res ; 139: 281-290, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29656193

RESUMO

Both nanoparticulate (nZnO and nTiO2) and organic chemical ultraviolet (UV) filters are active ingredients in sunscreen and protect against skin cancer, but limited research exists on the environmental effects of sunscreen release into aquatic systems. To examine the trade-offs of incorporating nanoparticles (NPs) into sunscreens over the past two decades, we targeted endpoints sensitive to the potential risks of different UV filters: solar reactive oxygen production in water and disruption of zebrafish embryo development. First, we developed methodology to extract nanoparticles from sunscreens with organic solvents. Zebrafish embryos exposed to parts-per-million NPs used in sunscreens displayed limited toxicological effects; nZnO particles appeared to be slightly more toxic than nTiO2 at the highest concentrations. In contrast, seven organic UV filters did not affect zebrafish embryogenesis at or near aqueous solubility. Second, to simulate potent photo-initiated reactions upon release into water, we examined methylene blue (MB) degradation under UV light. nTiO2 from sunscreen caused 10 times faster MB loss than nZnO and approached the photocatalytic degradation rate of a commercial nTiO2 photocatalysts (P25). Organic UV filters did not cause measurable MB degradation. Finally, we estimated that between 1 and 10 ppm of sunscreen NPs in surface waters could produce similar steady state hydroxyl radical concentrations as naturally occurring fluvic acids under sunlight irradiation. Incorporation of NPs into sunscreen may increase environmental concentrations of reactive oxygen, albeit to a limited extent, which can influence transformation of dissolved substances and potentially affect ecosystem processes.


Assuntos
Nanopartículas/toxicidade , Compostos Orgânicos/toxicidade , Protetores Solares/toxicidade , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade , Animais , Ecossistema , Embrião não Mamífero/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/efeitos da radiação , Compostos Orgânicos/química , Compostos Orgânicos/efeitos da radiação , Espécies Reativas de Oxigênio/química , Protetores Solares/química , Protetores Solares/efeitos da radiação , Titânio/química , Titânio/efeitos da radiação , Raios Ultravioleta , Poluentes Químicos da Água/química , Poluentes Químicos da Água/efeitos da radiação , Peixe-Zebra , Óxido de Zinco/química , Óxido de Zinco/efeitos da radiação
2.
Environ Sci Technol ; 51(22): 13319-13326, 2017 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-29028332

RESUMO

A photocatalyst-coated optical fiber was coupled with a 318 nm ultraviolet-A light emitting diode, which activated the photocatalysts by interfacial photon-electron excitation while minimizing photonic energy losses due to conventional photocatalytic barriers. The light delivery mechanism was explored via modeling of evanescent wave energy produced upon total internal reflection and photon refraction into the TiO2 surface coating. This work explores aqueous phase LED-irradiated optical fibers for treating organic pollutants and for the first time proposes a dual-mechanistic approach to light delivery and photocatalytic performance. Degradation of a probe organic pollutant was evaluated as a function of optical fiber coating thickness, fiber length, and photocatalyst attachment method and compared against the performance of an equivalent catalyst mass in a completely mixed slurry reactor. Measured and simulated photon fluence through the optical fibers decreased as a function of fiber length, coating thickness, or TiO2 mass externally coated on the fiber. Thinner TiO2 coatings achieved faster pollutant removal rates from solution, and dip coating performed better than sol-gel attachment methods. TiO2 attached to optical fibers achieved a 5-fold higher quantum yield compared against an equivalent mass of TiO2 suspended in a slurry solution.


Assuntos
Fibras Ópticas , Titânio , Catálise , Oxirredução
3.
Sci Total Environ ; 592: 458-464, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28320528

RESUMO

A composite material consisted of superfine powdered activated carbon (SPAC) and fibrous polystyrene (PS) was fabricated for the first time by electrospinning. SPAC is produced by pulverizing powdered activated carbon. The diameter of SPAC (100-400nm) is more than one hundred times smaller than conventional powdered activated carbon, but it maintains the internal pore structure based on organic micropollutant adsorption isotherms and specific surface area measurements. Co-spinning SPAC into PS fibers increased specific surface area from 6m2/g to 43m2/g. Unlike metal oxide nanoparticles, which are non-accessible for sorption from solution, electrospinning with SPAC created porous fibers. Composite SPAC-PS electrospun fibers, containing only 10% SPAC, had 30% greater phenanthrene sorption compared against PS fibers alone. SPAC particles embedded within the polymer were either partially or fully incorporated, and the accessibility of terminal adsorption sites were conserved. Conserving the adsorptive functionality of SPAC particles in electrospun non-woven polymeric fiber scaffolding can enable their application in environmental applications such as drinking water treatment.

4.
Sci Total Environ ; 584-585: 515-522, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28129906

RESUMO

Increasing application of engineered nanomaterials (ENMs) in industry and consumer products inevitably lead to their release into and impact on aquatic environments. To characterize the NMs efficiently in surface water, a fast and simple method is needed to separate and concentrate nanomaterials from the aqueous matrix without altering their shape and size. Applying cloud-point extraction (CPE) using the surfactant Triton 114 to an array of NMs (titanium dioxide, gold, silver, and silicon dioxide) with different sizes or capping agents in nanopure water resulted in extraction efficiency of 83%-107%. Additional CPE experiments were conducted to extract NMs from surface, potable, and sewage waters, and NMs enriched in the surfactant phase were characterized using transmission electron microscopy coupled with energy dispersive x-ray spectroscopy. The most abundant nanoparticles identified in surface water were silica, titanium dioxide, and iron oxide with 4-99nm diameter. The extraction efficiencies of CPE for silicon, titanium, and iron elements from environmental water samples were 51%, 15%, and 99%, respectively. This study applied CPE with TEM to enrich and analyze popular nanoparticles such as SiO2 and TiO2 from natural waters, which has not been well addressed by previous researches. Overall, CPE coupled with transmission electron microscopy (TEM) can be an effective method to characterize NMs in aqueous water samples, and further optimization will increase the extraction efficiency of NMs in complicated surface water matrix.

5.
Sci Total Environ ; 565: 902-912, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26874640

RESUMO

There is increasing recognition of the importance of transformations in nanomaterials across their lifecycle, yet few quantitative examples exist. We examined food-grade silicon dioxide (SiO2) nanomaterials from its source (bulk material providers), occurrence in food products, impacts on human gastrointestinal tract during consumption, and fate at wastewater treatment plants. Based upon XRD, XPS and TEM analysis, pure SiO2 present in multiple food-grade stock SiO2 exhibited consistent morphologies as agglomerates, ranging in size from below 100nm to >500nm, with all primary particle size in the range of 9-26nm and were most likely amorphous SiO2 based upon high resolution TEM. Ten of 14 targeted foods purchased in the USA contained SiO2 of the same morphology and size as the pristine bulk food-grade SiO2, at levels of 2 to 200mg Si per serving size. A dissolution study of pristine SiO2 showed up to 7% of the dissolution of the silica, but the un-dissolved SiO2 maintained the same morphology as the pristine SiO2. Across a realistic exposure range, pristine SiO2 exhibited adverse dose-response relationships on a cell model (microvilli) of the human gastro-intestinal tract, association onto microvilli and evidence that SiO2 lead to production of reactive oxygen species (ROS). We also observed accumulation of amorphous nano-SiO2 on bioflocs in tests using lab-cultured activated sludge and sewage sludges from a full-scale wastewater treatment plant (WWTP). Nano-scale SiO2 of the same size and morphology as pristine food-grade SiO2 was observed in raw sewage at a WWTP, but we identified non-agglomerated individual SiO2 particles with an average diameter of 21.5±4.7nm in treated effluent from the WWTP. This study demonstrates an approach to track nanomaterials from source-to-sink and establishes a baseline occurrence of nano-scale SiO2 in foods and WWTPs.


Assuntos
Análise de Alimentos , Trato Gastrointestinal/metabolismo , Produtos Domésticos/análise , Nanoestruturas/análise , Nanoestruturas/química , Dióxido de Silício/análise , Dióxido de Silício/química , Humanos , Pós/química
6.
J Colloid Interface Sci ; 383(1): 103-9, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22795038

RESUMO

We have studied the unique bridging behavior of solid-stabilized oil-in-ionic liquid (IL) and water-in-ionic liquid emulsions with respect to particle concentration, particle size, and droplet phase using a confocal laser scanning microscope. The emulsions exhibited three morphology regimes: (1) single, sparingly covered droplets, (2) bridged clusters of droplets, and (3) fully covered droplets. The degree of bridging was directly proportional to the total potential bridging area which can be determined from the particle size and concentration. This type of emulsion diverges from much of the conventional wisdom of oil-water Pickering emulsions regarding the particle self-assembly onto droplet interfaces and liquid film stability. While the focus here is the bridging regime, we also report interesting observations, specifically, the deformed oil droplets and the transport of excess solid particles into the water droplets, in the fully covered droplet regime. The work identified new self-assembled particle structure and morphology in solid-stabilized emulsions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA