Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Br J Pharmacol ; 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38825750

RESUMO

G protein-coupled receptors (GPCRs) are a large family of cell surface receptors that play a critical role in nervous system function by transmitting signals between cells and their environment. They are involved in many, if not all, nervous system processes, and their dysfunction has been linked to various neurological disorders representing important drug targets. This overview emphasises the GPCRs of the nervous system, which are the research focus of the members of ERNEST COST action (CA18133) working group 'Biological roles of signal transduction'. First, the (patho)physiological role of the nervous system GPCRs in the modulation of synapse function is discussed. We then debate the (patho)physiology and pharmacology of opioid, acetylcholine, chemokine, melatonin and adhesion GPCRs in the nervous system. Finally, we address the orphan GPCRs, their implication in the nervous system function and disease, and the challenges that need to be addressed to deorphanize them.

2.
Cell Rep ; 43(1): 113640, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38180839

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) form a large family of cell surface molecules with versatile tasks in organ development. Many aGPCRs still await their functional and pharmacological deorphanization. Here, we characterized the orphan aGPCR CG11318/mayo of Drosophila melanogaster and found it expressed in specific regions of the gastrointestinal canal and anal plates, epithelial specializations that control ion homeostasis. Genetic removal of mayo results in tachycardia, which is caused by hyperkalemia of the larval hemolymph. The hyperkalemic effect can be mimicked by a raise in ambient potassium concentration, while normal potassium levels in mayoKO mutants can be restored by pharmacological inhibition of potassium channels. Intriguingly, hyperkalemia and tachycardia are caused non-cell autonomously through mayo-dependent control of enterocyte proliferation in the larval midgut, which is the primary function of this aGPCR. These findings characterize the ancestral aGPCR Mayo as a homeostatic regulator of gut development.


Assuntos
Drosophila , Hiperpotassemia , Animais , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Larva/metabolismo , Potássio/metabolismo , Taquicardia , Adesão Celular
3.
Nat Protoc ; 19(1): 113-126, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37945792

RESUMO

The study of how mechanical forces affect biological events in living tissue is important for the understanding of a multitude of physiogical and pathophysiological phenomena. However, these investigations are often impeded by insufficient knowledge about force parameters, inadequate experimental administration of force stimuli and lack of noninvasive means to record their molecular and cellular effects. We therefore introduced a procedure to study the impact of force stimulation on adhesion G-protein-coupled receptor dissociation in mechanosensory neurons. Here, we detail a procedure to harness the mechanical force spectrum that emerges during the natural flexion-extension cycle of the femorotibial joint of adult fruit flies (Drosophila melanogaster). Mechanical load generated during the joint's motion is transmitted to specialized mechanosensory neurons residing close to the joint axis, which serve as proprioceptive sensors in the peripheral nervous system of the animal. Temporary immobilization of the joint by a restraint made of a human hair allows for the observation of transgenic mechanosensitive reporters by using fluorescent readout in the neurons before, during and after cessation of mechanical stimulation. The assay harnesses physiologically adequate stimuli for joint flexion and extension, can be conducted noninvasively in live specimens and is compatible with various transgenic reporter systems beyond the initially conceived strategy and mechanobiological hypotheses tested. The application of the protocol requires knowledge in Drosophila genetics, husbandry and fluorescence imaging and micromanipulation skills. The experimental procedure can be completed in 10 h and requires an additional 30 min in advance for fly fixation and leg immobilization. The apple agar cooking and heptane glue preparation requires a maximum of 30 min on the day before the experiment is conducted.


Assuntos
Drosophila melanogaster , Perna (Membro) , Animais , Humanos , Drosophila melanogaster/fisiologia , Neurônios , Animais Geneticamente Modificados , Drosophila
4.
Pflugers Arch ; 475(12): 1375-1385, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37670155

RESUMO

Water transport through water channels, aquaporins (AQPs), is vital for many physiological processes including epithelial fluid secretion, cell migration and adipocyte metabolism. Water flux through AQPs is driven by the osmotic gradient that results from concentration differences of solutes including ions. Here, we developed a novel optogenetic toolkit that combines the light-gated anion channel GtACR1 either with the light-gated K+ channel HcKCR1 or the new Na+ channelrhodopsin HcNCR1 with high Na+ permeability, to manipulate water transport in Xenopus oocytes non-invasively. Water efflux through AQP was achieved by light-activating K+ and Cl- efflux through HcKCR1 and GtACR1. Contrarily, when GtACR1 was co-expressed with HcNCR1, inward movement of Na+ and Cl- was light-triggered, and the resulting osmotic gradient led to water influx through AQP1. In sum, we demonstrate a novel optogenetic strategy to manipulate water movement into or out of Xenopus oocytes non-invasively. This approach provides a new avenue to interfere with water homeostasis as a means to study related biological phenomena across cell types and organisms.


Assuntos
Aquaporinas , Água , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Água/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico , Permeabilidade , Oócitos/metabolismo
5.
Open Biol ; 13(4): 220308, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37072034

RESUMO

Neuronally orchestrated muscular movement and locomotion are defining faculties of multicellular animals. Due to its simple brain and genetic accessibility, the larva of the fruit fly Drosophila melanogaster allows one to study these processes at tractable levels of complexity. However, although the faculty of locomotion clearly pertains to the individual, most studies of locomotion in larvae use measurements aggregated across animals, or animals tested one by one, an extravagance for larger-scale analyses. This prevents grasping the inter- and intra-individual variability in locomotion and its neurogenetic determinants. Here, we present the IMBA (individual maggot behaviour analyser) for analysing the behaviour of individual larvae within groups, reliably resolving individual identity across collisions. We use the IMBA to systematically describe the inter- and intra-individual variability in locomotion of wild-type animals, and how the variability is reduced by associative learning. We then report a novel locomotion phenotype of an adhesion GPCR mutant. We further investigated the modulation of locomotion across repeated activations of dopamine neurons in individual animals, and the transient backward locomotion induced by brief optogenetic activation of the brain-descending 'mooncrawler' neurons. In summary, the IMBA is an easy-to-use toolbox allowing an unprecedentedly rich view of the behaviour and its variability of individual larvae, with utility in multiple biomedical research contexts.


Assuntos
Drosophila melanogaster , Drosophila , Animais , Drosophila melanogaster/genética , Larva/genética , Locomoção/genética , Encéfalo/fisiologia
6.
Nature ; 615(7954): 945-953, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890234

RESUMO

Adhesion G-protein-coupled receptors (aGPCRs) bear notable similarity to Notch proteins1, a class of surface receptors poised for mechano-proteolytic activation2-4, including an evolutionarily conserved mechanism of cleavage5-8. However, so far there is no unifying explanation for why aGPCRs are autoproteolytically processed. Here we introduce a genetically encoded sensor system to detect the dissociation events of aGPCR heterodimers into their constituent N-terminal and C-terminal fragments (NTFs and CTFs, respectively). An NTF release sensor (NRS) of the neural latrophilin-type aGPCR Cirl (ADGRL)9-11, from Drosophila melanogaster, is stimulated by mechanical force. Cirl-NRS activation indicates that receptor dissociation occurs in neurons and cortex glial cells. The release of NTFs from cortex glial cells requires trans-interaction between Cirl and its ligand, the Toll-like receptor Tollo (Toll-8)12, on neural progenitor cells, whereas expressing Cirl and Tollo in cis suppresses dissociation of the aGPCR. This interaction is necessary to control the size of the neuroblast pool in the central nervous system. We conclude that receptor autoproteolysis enables non-cell-autonomous activities of aGPCRs, and that the dissociation of aGPCRs is controlled by their ligand expression profile and by mechanical force. The NRS system will be helpful in elucidating the physiological roles and signal modulators of aGPCRs, which constitute a large untapped reservoir of drug targets for cardiovascular, immune, neuropsychiatric and neoplastic diseases13.


Assuntos
Adesão Celular , Proteínas de Drosophila , Drosophila melanogaster , Ligantes , Proteólise , Receptores Acoplados a Proteínas G , Receptores de Peptídeos , Animais , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/química , Receptores de Peptídeos/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Células-Tronco Neurais/metabolismo
7.
Sci Rep ; 12(1): 13507, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35931711

RESUMO

The 15q13.3 microdeletion has pleiotropic effects ranging from apparently healthy to severely affected individuals. The underlying basis of the variable phenotype remains elusive. We analyzed gene expression using blood from three individuals with 15q13.3 microdeletion and brain cortex tissue from ten mice Df[h15q13]/+. We assessed differentially expressed genes (DEGs), protein-protein interaction (PPI) functional modules, and gene expression in brain developmental stages. The deleted genes' haploinsufficiency was not transcriptionally compensated, suggesting a dosage effect may contribute to the pathomechanism. DEGs shared between tested individuals and a corresponding mouse model show a significant overlap including genes involved in monogenic neurodevelopmental disorders. Yet, network-wide dysregulatory effects suggest the phenotype is not caused by a single critical gene. A significant proportion of blood DEGs, silenced in adult brain, have maximum expression during the prenatal brain development. Based on DEGs and their PPI partners we identified altered functional modules related to developmental processes, including nervous system development. We show that the 15q13.3 microdeletion has a ubiquitous impact on the transcriptome pattern, especially dysregulation of genes involved in brain development. The high phenotypic variability seen in 15q13.3 microdeletion could stem from an increased vulnerability during brain development, instead of a specific pathomechanism.


Assuntos
Transtornos Cromossômicos , Transcriptoma , Animais , Encéfalo/metabolismo , Deleção Cromossômica , Transtornos Cromossômicos/metabolismo , Cromossomos Humanos Par 15/genética , Humanos , Deficiência Intelectual , Camundongos , Convulsões
8.
Brain ; 145(11): 3787-3802, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35022694

RESUMO

Humans carrying the CORD7 (cone-rod dystrophy 7) mutation possess increased verbal IQ and working memory. This autosomal dominant syndrome is caused by the single-amino acid R844H exchange (human numbering) located in the 310 helix of the C2A domain of RIMS1/RIM1 (Rab3-interacting molecule 1). RIM is an evolutionarily conserved multi-domain protein and essential component of presynaptic active zones, which is centrally involved in fast, Ca2+-triggered neurotransmitter release. How the CORD7 mutation affects synaptic function has remained unclear thus far. Here, we established Drosophila melanogaster as a disease model for clarifying the effects of the CORD7 mutation on RIM function and synaptic vesicle release. To this end, using protein expression and X-ray crystallography, we solved the molecular structure of the Drosophila C2A domain at 1.92 Šresolution and by comparison to its mammalian homologue ascertained that the location of the CORD7 mutation is structurally conserved in fly RIM. Further, CRISPR/Cas9-assisted genomic engineering was employed for the generation of rim alleles encoding the R915H CORD7 exchange or R915E, R916E substitutions (fly numbering) to effect local charge reversal at the 310 helix. Through electrophysiological characterization by two-electrode voltage clamp and focal recordings we determined that the CORD7 mutation exerts a semi-dominant rather than a dominant effect on synaptic transmission resulting in faster, more efficient synaptic release and increased size of the readily releasable pool but decreased sensitivity for the fast calcium chelator BAPTA. In addition, the rim CORD7 allele increased the number of presynaptic active zones but left their nanoscopic organization unperturbed as revealed by super-resolution microscopy of the presynaptic scaffold protein Bruchpilot/ELKS/CAST. We conclude that the CORD7 mutation leads to tighter release coupling, an increased readily releasable pool size and more release sites thereby promoting more efficient synaptic transmitter release. These results strongly suggest that similar mechanisms may underlie the CORD7 disease phenotype in patients and that enhanced synaptic transmission may contribute to their increased cognitive abilities.


Assuntos
Drosophila melanogaster , Retinose Pigmentar , Animais , Humanos , Cognição , Mutação , Terminações Pré-Sinápticas , Retinose Pigmentar/genética , Transmissão Sináptica , Proteínas de Drosophila/genética
9.
Biol Methods Protoc ; 7(1): bpac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35087953

RESUMO

The precise and rapid construction of alleles through CRISPR/Cas9-mediated genome engineering renders Drosophila melanogaster a powerful animal system for molecular structure-function analyses and human disease models. Application of the ovoD co-selection method offers expedited generation and enrichment of scarlessly edited alleles without the need for linked transformation markers, which specifically in the case of exon editing can impact allele usability. However, we found that knockin procedures by homology-directed repair (HDR) under ovoD co-selection resulted in low transformation efficiency. This is likely due to repeated rounds of Cas9 cleavage of HDR donor and/or engineered genomic locus DNA, as noted for other CRISPR/Cas9 editing strategies before, impeding the recovery of correctly edited alleles. Here we provide a one-step protocol to improve the generation of scarless alleles by ovoD -co-selection with single-guide RNA (sgRNA) binding site masking. Using this workflow, we constructed human disease alleles for two Drosophila genes, unc-13/CG2999 and armadillo/CG11579. We show and quantify how a known countermeasure, the insertion of silent point mutations into protospacer adjacent motif (PAM) or sgRNA homology regions, can potently suppress unintended sequence modifications during CRISPR/Cas9 genome editing of D. melanogaster under ovoD co-selection. This strongly increased the recovery frequency of disease alleles.

10.
FEBS J ; 289(24): 7610-7630, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-34729908

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are a class of structurally and functionally highly intriguing cell surface receptors with essential functions in health and disease. Thus, they display a vastly unexploited pharmacological potential. Our current understanding of the physiological functions and signaling mechanisms of aGPCRs form the basis for elucidating further molecular aspects. Combining these with novel tools and methodologies from different fields tailored for studying these unusual receptors yields a powerful potential for pushing aGPCR research from singular approaches toward building up an in-depth knowledge that will facilitate its translation to applied science. In this review, we summarize the state-of-the-art knowledge on aGPCRs in respect to structure-function relations, physiology, and clinical aspects, as well as the latest advances in the field. We highlight the upcoming most pressing topics in aGPCR research and identify strategies to tackle them. Furthermore, we discuss approaches how to promote, stimulate, and translate research on aGPCRs 'from bench to bedside' in the future.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Adesão Celular
11.
PLoS One ; 16(7): e0241092, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34234350

RESUMO

Tumor cells tend to metabolize glucose through aerobic glycolysis instead of oxidative phosphorylation in mitochondria. One of the rate limiting enzymes of glycolysis is 6-phosphofructo-1-kinase, which is allosterically activated by fructose 2,6-bisphosphate which in turn is produced by 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2 or PFKFB). Mounting evidence suggests that cancerous tissues overexpress the PFKFB isoenzyme, PFKFB3, being causing enhanced proliferation of cancer cells. Initially, six PFKFB3 splice variants with different C-termini have been documented in humans. More recently, additional splice variants with varying N-termini were discovered the functions of which are to be uncovered. Glioblastoma is one of the deadliest forms of brain tumors. Up to now, the role of PFKFB3 splice variants in the progression and prognosis of glioblastomas is only partially understood. In this study, we first re-categorized the PFKFB3 splice variant repertoire to simplify the denomination. We investigated the impact of increased and decreased levels of PFKFB3-4 (former UBI2K4) and PFKFB3-5 (former variant 5) on the viability and proliferation rate of glioblastoma U87 and HEK-293 cells. The simultaneous knock-down of PFKFB3-4 and PFKFB3-5 led to a decrease in viability and proliferation of U87 and HEK-293 cells as well as a reduction in HEK-293 cell colony formation. Overexpression of PFKFB3-4 but not PFKFB3-5 resulted in increased cell viability and proliferation. This finding contrasts with the common notion that overexpression of PFKFB3 enhances tumor growth, but instead suggests splice variant-specific effects of PFKFB3, apparently with opposing effects on cell behaviour. Strikingly, in line with this result, we found that in human IDH-wildtype glioblastomas, the PFKFB3-4 to PFKFB3-5 ratio was significantly shifted towards PFKFB3-4 when compared to control brain samples. Our findings indicate that the expression level of distinct PFKFB3 splice variants impinges on tumorigenic properties of glioblastomas and that splice pattern may be of important diagnostic value for glioblastoma.


Assuntos
Glioblastoma/enzimologia , Fosfofrutoquinase-2/metabolismo , Neoplasias Encefálicas/metabolismo , Glicólise , Células HEK293 , Humanos , Isoenzimas/metabolismo
12.
Glia ; 69(6): 1540-1562, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33609060

RESUMO

When the brain is in a pathological state, the content of lipid droplets (LDs), the lipid storage organelles, is increased, particularly in glial cells, but rarely in neurons. The biology and mechanisms leading to LD accumulation in astrocytes, glial cells with key homeostatic functions, are poorly understood. We imaged fluorescently labeled LDs by microscopy in isolated and brain tissue rat astrocytes and in glia-like cells in Drosophila brain to determine the (sub)cellular localization, mobility, and content of LDs under various stress conditions characteristic for brain pathologies. LDs exhibited confined mobility proximal to mitochondria and endoplasmic reticulum that was attenuated by metabolic stress and by increased intracellular Ca2+ , likely to enhance the LD-organelle interaction imaged by electron microscopy. When de novo biogenesis of LDs was attenuated by inhibition of DGAT1 and DGAT2 enzymes, the astrocyte cell number was reduced by ~40%, suggesting that in astrocytes LD turnover is important for cell survival and/or proliferative cycle. Exposure to noradrenaline, a brain stress response system neuromodulator, and metabolic and hypoxic stress strongly facilitated LD accumulation in astrocytes. The observed response of stressed astrocytes may be viewed as a support for energy provision, but also to be neuroprotective against the stress-induced lipotoxicity.


Assuntos
Astrócitos , Animais , Drosophila , Retículo Endoplasmático/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias , Ratos
13.
Mol Cell ; 81(5): 905-921.e5, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497605

RESUMO

Adhesion G protein-coupled receptors (aGPCRs)/family B2 GPCRs execute critical tasks during development and the operation of organs, and their genetic lesions are associated with human disorders, including cancers. Exceptional structural aGPCR features are the presence of a tethered agonist (TA) concealed within a GPCR autoproteolysis-inducing (GAIN) domain and their non-covalent heteromeric two-subunit layout. How the TA is poised for activation while maintaining this delicate receptor architecture is central to conflicting signaling paradigms that either involve or exclude aGPCR heterodimer separation. We investigated this matter in five mammalian aGPCR homologs (ADGRB3, ADGRE2, ADGRE5, ADGRG1, and ADGRL1) and demonstrate that intact aGPCR heterodimers exist at the cell surface, that the core TA region becomes unmasked in the cleaved GAIN domain, and that intra-GAIN domain movements regulate the level of tethered agonist exposure, thereby likely controlling aGPCR activity. Collectively, these findings delineate a unifying mechanism for TA-dependent signaling of intact aGPCRs.


Assuntos
Antígenos CD/química , Proteínas do Tecido Nervoso/química , Peptídeos/química , Receptores Acoplados a Proteínas G/química , Receptores de Peptídeos/química , Sequência de Aminoácidos , Animais , Antígenos CD/genética , Antígenos CD/metabolismo , Sítios de Ligação , Células COS , Chlorocebus aethiops , Cristalografia por Raios X , Expressão Gênica , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteólise , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais
14.
J Exp Biol ; 222(Pt 19)2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31488622

RESUMO

The Sap47 gene of Drosophila melanogaster encodes a highly abundant 47 kDa synaptic vesicle-associated protein. Sap47 null mutants show defects in synaptic plasticity and larval olfactory associative learning but the molecular function of Sap47 at the synapse is unknown. We demonstrate that Sap47 modulates the phosphorylation of another highly abundant conserved presynaptic protein, synapsin. Site-specific phosphorylation of Drosophila synapsin has repeatedly been shown to be important for behavioural plasticity but it was not known where these phospho-synapsin isoforms are localized in the brain. Here, we report the distribution of serine-6-phosphorylated synapsin in the adult brain and show that it is highly enriched in rings of synapses in the ellipsoid body and in large synapses near the lateral triangle. The effects of knockout of Sap47 or synapsin on olfactory associative learning/memory support the hypothesis that both proteins operate in the same molecular pathway. We therefore asked if this might also be true for other aspects of their function. We show that knockout of Sap47 but not synapsin reduces lifespan, whereas knockout of Sap47 and synapsin, either individually or together, affects climbing proficiency, as well as plasticity in circadian rhythms and sleep. Furthermore, electrophysiological assessment of synaptic properties at the larval neuromuscular junction (NMJ) reveals increased spontaneous synaptic vesicle fusion and reduced paired pulse facilitation in Sap47 and synapsin single and double mutants. Our results imply that Sap47 and synapsin cooperate non-uniformly in the control of synaptic properties in different behaviourally relevant neuronal networks of the fruitfly.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Locomoção/genética , Longevidade/genética , Mutação/genética , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal/genética , Sinapsinas/metabolismo , Animais , Encéfalo/metabolismo , Ritmo Circadiano/fisiologia , Drosophila melanogaster/genética , Larva/metabolismo , Junção Neuromuscular/metabolismo , Fosforilação , Fosfosserina/metabolismo , Isoformas de Proteínas/metabolismo , Sinapsinas/genética
15.
Ann N Y Acad Sci ; 1456(1): 80-95, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365134

RESUMO

G protein-coupled receptors (GPCRs) are encoded by over 800 genes in the human genome. Motivated by different scientific rationales, the two classification systems that are mainly in use, the ABC and GRAFS systems, organize GPCRs according to their pharmacological features and phylogenetic relations, respectively. Within those systems, adhesion GPCRs (aGPCRs) constitute a group of over 30 mammalian homologs, most of which are still orphans with undefined activating signals and signal transduction properties. Previous efforts have further subdivided mammalian aGPCRs into nine subfamilies to indicate phylogenetic relationships. However, this subclassification scheme has shortcomings and inconsistencies that require attention. Here, we have reassessed the phylogenetic relationships of aGPCRs from vertebrate and invertebrate species. Our findings confirm that secretin receptor-like GPCRs most probably emerged from ancestral aGPCRs. We show that reassignment of several aGPCRs to families essentially requires input from functional data. Our analyses establish the need for introducing novel aGPCR subfamilies due to aGPCR sequences from invertebrate species that are not readily assignable to any existing subfamily. We conclude that the current classification systems ought to be updated to consider an unambiguous taxonomy of a hierarchically organized classification and pharmacological properties, and to accommodate phylogenetic affiliations between aGPCR genes within mammals and across the animal kingdom.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Humanos , Filogenia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
16.
Ann N Y Acad Sci ; 1456(1): 5-25, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31168816

RESUMO

The adhesion class of G protein-coupled receptors (GPCRs) is the second largest family of GPCRs (33 members in humans). Adhesion GPCRs (aGPCRs) are defined by a large extracellular N-terminal region that is linked to a C-terminal seven transmembrane (7TM) domain via a GPCR-autoproteolysis inducing (GAIN) domain containing a GPCR proteolytic site (GPS). Most aGPCRs undergo autoproteolysis at the GPS motif, but the cleaved fragments stay closely associated, with the N-terminal fragment (NTF) bound to the 7TM of the C-terminal fragment (CTF). The NTFs of most aGPCRs contain domains known to be involved in cell-cell adhesion, while the CTFs are involved in classical G protein signaling, as well as other intracellular signaling. In this workshop report, we review the most recent findings on the biology, signaling mechanisms, and physiological functions of aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Receptores Acoplados a Proteínas G/química
17.
J Cell Biol ; 218(3): 1011-1026, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30782781

RESUMO

Information processing by the nervous system depends on neurotransmitter release from synaptic vesicles (SVs) at the presynaptic active zone. Molecular components of the cytomatrix at the active zone (CAZ) regulate the final stages of the SV cycle preceding exocytosis and thereby shape the efficacy and plasticity of synaptic transmission. Part of this regulation is reflected by a physical association of SVs with filamentous CAZ structures via largely unknown protein interactions. The very C-terminal region of Bruchpilot (Brp), a key component of the Drosophila melanogaster CAZ, participates in SV tethering. Here, we identify the conserved SNARE regulator Complexin (Cpx) in an in vivo screen for molecules that link the Brp C terminus to SVs. Brp and Cpx interact genetically and functionally. Both proteins promote SV recruitment to the Drosophila CAZ and counteract short-term synaptic depression. Analyzing SV tethering to active zone ribbons of cpx3 knockout mice supports an evolutionarily conserved role of Cpx upstream of SNARE complex assembly.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal , Vesículas Sinápticas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Domínios Proteicos , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Vesículas Sinápticas/genética
18.
Front Oncol ; 8: 59, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29594040

RESUMO

In mammals, numerous organ systems are equipped with adhesion G protein-coupled receptors (aGPCRs) to shape cellular processes including migration, adhesion, polarity and guidance. All of these cell biological aspects are closely associated with tumor cell biology. Consistently, aberrant expression or malfunction of aGPCRs has been associated with dysplasia and tumorigenesis. Mounting evidence indicates that cancer cells comprise viscoelastic properties that are different from that of their non-tumorigenic counterparts, a feature that is believed to contribute to the increased motility and invasiveness of metastatic cancer cells. This is particularly interesting in light of the recent identification of the mechanosensitive facility of aGPCRs. aGPCRs are signified by large extracellular domains (ECDs) with adhesive properties, which promote the engagement with insoluble ligands. This configuration may enable reliable force transmission to the ECDs and may constitute a molecular switch, vital for mechano-dependent aGPCR signaling. The investigation of aGPCR function in mechanosensation is still in its infancy and has been largely restricted to physiological contexts. It remains to be elucidated if and how aGPCR function affects the mechanoregulation of tumor cells, how this may shape the mechanical signature and ultimately determines the pathological features of a cancer cell. This article aims to view known aGPCR functions from a biomechanical perspective and to delineate how this might impinge on the mechanobiology of cancer cells.

19.
Elife ; 62017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28784204

RESUMO

Adhesion-type G protein-coupled receptors (aGPCRs), a large molecule family with over 30 members in humans, operate in organ development, brain function and govern immunological responses. Correspondingly, this receptor family is linked to a multitude of diverse human diseases. aGPCRs have been suggested to possess mechanosensory properties, though their mechanism of action is fully unknown. Here we show that the Drosophila aGPCR Latrophilin/dCIRL acts in mechanosensory neurons by modulating ionotropic receptor currents, the initiating step of cellular mechanosensation. This process depends on the length of the extended ectodomain and the tethered agonist of the receptor, but not on its autoproteolysis, a characteristic biochemical feature of the aGPCR family. Intracellularly, dCIRL quenches cAMP levels upon mechanical activation thereby specifically increasing the mechanosensitivity of neurons. These results provide direct evidence that the aGPCR dCIRL acts as a molecular sensor and signal transducer that detects and converts mechanical stimuli into a metabotropic response.


Assuntos
Potenciais de Ação , AMP Cíclico/metabolismo , Proteínas de Drosophila/metabolismo , Mecanorreceptores/fisiologia , Receptores de Peptídeos/metabolismo , Células Receptoras Sensoriais/fisiologia , Animais , Drosophila , Fenômenos Eletrofisiológicos , Imagem Óptica
20.
Handb Exp Pharmacol ; 234: 221-247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27832490

RESUMO

Adhesion GPCRs as mechanosensors. Different aGPCR homologs and their cognate ligands have been described in settings, which suggest that they function in a mechanosensory capacity. For details, see text G protein-coupled receptors (GPCRs) constitute the most versatile superfamily of biosensors. This group of receptors is formed by hundreds of GPCRs, each of which is tuned to the perception of a specific set of stimuli a cell may encounter emanating from the outside world or from internal sources. Most GPCRs are receptive for chemical compounds such as peptides, proteins, lipids, nucleotides, sugars, and other organic compounds, and this capacity is utilized in several sensory organs to initiate visual, olfactory, gustatory, or endocrine signals. In contrast, GPCRs have only anecdotally been implicated in the perception of mechanical stimuli. Recent studies, however, show that the family of adhesion GPCRs (aGPCRs), which represents a large panel of over 30 homologs within the GPCR superfamily, displays molecular design and expression patterns that are compatible with receptivity toward mechanical cues (Fig. 1). Here, we review physiological and molecular principles of established mechanosensors, discuss their relevance for current research of the mechanosensory function of aGPCRs, and survey the current state of knowledge on aGPCRs as mechanosensing molecules.


Assuntos
Moléculas de Adesão Celular/metabolismo , Adesão Celular , Membrana Celular/metabolismo , Mecanotransdução Celular , Receptores Acoplados a Proteínas G/metabolismo , Animais , Sítios de Ligação , Moléculas de Adesão Celular/química , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores Acoplados a Proteínas G/química , Estresse Mecânico , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA