RESUMO
Cellular inhibitor of apoptosis proteins (cIAPs) are RING-containing E3 ubiquitin ligases that ubiquitylate receptor-interacting protein kinase 1 (RIPK1) to regulate TNF signalling. Here, we established mice simultaneously expressing enzymatically inactive cIAP1/2 variants, bearing mutations in the RING domains of cIAP1/2 (cIAP1/2 mutant RING, cIAP1/2MutR ). cIap1/2MutR/MutR mice died during embryonic development due to RIPK1-mediated apoptosis. While expression of kinase-inactive RIPK1D138N rescued embryonic development, Ripk1D138N/D138N /cIap1/2MutR/MutR mice developed systemic inflammation and died postweaning. Cells expressing cIAP1/2MutR and RIPK1D138N were still susceptible to TNF-induced apoptosis and necroptosis, implying additional kinase-independent RIPK1 activities in regulating TNF signalling. Although further ablation of Ripk3 did not lead to any phenotypic improvement, Tnfr1 gene knock-out prevented early onset of systemic inflammation and premature mortality, indicating that cIAPs control TNFR1-mediated toxicity independent of RIPK1 and RIPK3. Beyond providing novel molecular insights into TNF-signalling, the mouse model established in this study can serve as a useful tool to further evaluate ongoing therapeutic protocols using inhibitors of TNF, cIAPs and RIPK1.
Assuntos
Proteínas Inibidoras de Apoptose , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Morte Celular , Apoptose , Inflamação/genética , Inflamação/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
SQSTM1/p62 is a multitasking protein that functions as an autophagy receptor, but also as a signaling hub regulating diverse cellular pathways. p62 accumulation in mice with autophagy-deficient hepatocytes mediates liver damage and hepatocarcinogenesis through Nrf2 overactivation, yet the role of the p62-Keap1-Nrf2 axis in cell death and hepatocarcinogenesis in the absence of underlying autophagy defects is less clear. Here, we addressed the role of p62 and Nrf2 activation in a chronic liver disease model, namely mice with liver parenchymal cell-specific knockout of NEMO (NEMOLPC-KO), in which we demonstrate that they show no inherent autophagy impairment. Unexpectedly, systemic p62 ablation aggravated the phenotype and caused early postnatal lethality in NEMOLPC-KO mice. Expression of a p62 mutant (p62ΔEx2-5), which retains the ability to form aggregates and activate Nrf2 signaling, did not cause early lethality, but exacerbated hepatocarcinogenesis in these mice. Our immunohistological and molecular analyses showed that the increased tumor burden was only consistent with increased expression/stability of p62ΔEx2-5 driving Nrf2 hyperactivation, but not with other protumorigenic functions of p62, such as mTOR activation, cMYC upregulation or increased fibrosis. Surprisingly, forced activation of Nrf2 per se did not increase liver injury or tumor burden in NEMOLPC-KO mice, suggesting that autophagy impairment is a necessary prerequisite to unleash the Nrf2 oncogenic potential in mice with autophagy-competent hepatocytes.
RESUMO
Elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti-apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro-inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up-regulation and secretion of chemokines such as IL8, that are responsible for intra-tumour neutrophil accumulation. Alteration of the XIAP-RIPK2-TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.
Assuntos
Proteínas Inibidoras de Apoptose , Melanoma , Infiltração de Neutrófilos , Neoplasias Cutâneas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Interleucina-8/biossíntese , Melanoma/genética , Melanoma/imunologia , Camundongos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismoRESUMO
Caspase-8 is the initiator caspase of extrinsic apoptosis1,2 and inhibits necroptosis mediated by RIPK3 and MLKL. Accordingly, caspase-8 deficiency in mice causes embryonic lethality3, which can be rescued by deletion of either Ripk3 or Mlkl4-6. Here we show that the expression of enzymatically inactive CASP8(C362S) causes embryonic lethality in mice by inducing necroptosis and pyroptosis. Similar to Casp8-/- mice3,7, Casp8C362S/C362S mouse embryos died after endothelial cell necroptosis leading to cardiovascular defects. MLKL deficiency rescued the cardiovascular phenotype but unexpectedly caused perinatal lethality in Casp8C362S/C362S mice, indicating that CASP8(C362S) causes necroptosis-independent death at later stages of embryonic development. Specific loss of the catalytic activity of caspase-8 in intestinal epithelial cells induced intestinal inflammation similar to intestinal epithelial cell-specific Casp8 knockout mice8. Inhibition of necroptosis by additional deletion of Mlkl severely aggravated intestinal inflammation and caused premature lethality in Mlkl knockout mice with specific loss of caspase-8 catalytic activity in intestinal epithelial cells. Expression of CASP8(C362S) triggered the formation of ASC specks, activation of caspase-1 and secretion of IL-1ß. Both embryonic lethality and premature death were completely rescued in Casp8C362S/C362SMlkl-/-Asc-/- or Casp8C362S/C362SMlkl-/-Casp1-/- mice, indicating that the activation of the inflammasome promotes CASP8(C362S)-mediated tissue pathology when necroptosis is blocked. Therefore, caspase-8 represents the molecular switch that controls apoptosis, necroptosis and pyroptosis, and prevents tissue damage during embryonic development and adulthood.
Assuntos
Apoptose/genética , Caspase 8/genética , Caspase 8/metabolismo , Necroptose/genética , Piroptose/genética , Animais , Linhagem Celular , Células Cultivadas , Ativação Enzimática/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Inflamassomos/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/enzimologia , Queratinócitos/citologia , Queratinócitos/patologia , Camundongos , Mutação , Receptor TIE-2/genética , Receptor TIE-2/metabolismoRESUMO
BACKGROUND: Molecular markers predicting survival in esophageal adenocarcinoma (EAC) are rare. Specifically, in favorable oncologic situations, e.g. nodal negativity or major neoadjuvant therapy response, there is a lack of additional risk factors that serve to predict patients' outcome more precisely. This study evaluated X-linked inhibitor of apoptosis protein (XIAP) as a potential marker improving outcome prediction. METHODS: Tissue microarrays from 362 patients that were diagnosed with resectable EAC were included in the study. XIAP was stained by immunohistochemistry and correlated to clinical outcome, molecular markers and markers of the cellular tumor microenvironment. RESULTS: XIAP did not impact on overall survival (OS) in the whole study collective. Subgroup analyses stratifying for common genetic markers (TP53, ERBB2, ARID1A/SWI/SNF) did not disclose any impact of XIAP expression on survival. Detailed subgroup analyses of [1] nodal negative patients, [2] highly T-cell infiltrated tumors and [3] therapy responders to neoadjuvant treatment revealed a significant inverse role of high XIAP expression in these specific oncologic situations; elevated XIAP expression detrimentally affected patients' outcome in these subgroups. [1]: OS XIAP low: 202 months (m) vs. XIAP high: 38 m; [2]: OS 116 m vs. 28.2 m; [3]: OS 31 m vs. 4 m). CONCLUSIONS: Our data suggest XIAP expression in EAC as a worthy tool to improve outcome prediction in specific oncologic settings that might directly impact on clinical diagnosis and treatment of EAC in the future.
Assuntos
Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidade , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Linfócitos do Interstício Tumoral/metabolismo , Terapia Neoadjuvante , Subpopulações de Linfócitos T/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Idoso , Biomarcadores Tumorais/metabolismo , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/terapia , Esofagectomia , Feminino , Humanos , Imuno-Histoquímica , Linfonodos/patologia , Masculino , Terapia Neoadjuvante/métodos , Prognóstico , Estudos Retrospectivos , Taxa de SobrevidaRESUMO
Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates.